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Artificial cells are best defined as micrometre-sized structures able to mimic

many of the morphological and functional characteristics of a living cell. In

this mini-review, we describe progress in the application of droplet-based

microfluidics for the generation of artificial cells and protocells.
1. Introduction
The construction of entities that resemble and mimic the basic unit of structure

and function in living organisms is an immensely challenging task, but one

that offers the possibility of replacing faulty biological components (in individuals

affected by pathologies such as diabetes, liver or immune deficiency) and facilitat-

ing the understanding of life by bottom-up assembly of functional constituents.

Although a strict definition of an artificial cell is still a matter of some debate

[1,2], over the last century, the term artificial cell has been commonly applied to

any system that, by merging natural and synthetic chemical components, is

able to mimic or substitute cellular functions [3,4]. Unsurprisingly, artificial

cells have already found applications as blood cell substitutes [5], in gene therapy

[6] and in targeted drug delivery [7]. Nevertheless, robust and high-efficiency

methods for the routine generation of artificial cells are still a rarity [8].

Recent progress in emerging fields such as synthetic biology and material

science is beginning to yield new tools for the design and construction of biologi-

cal pathways and systems that exist in nature, with microfluidic technologies

playing a key role [4,9,10]. Microfluidic systems are well recognized for their

ability to efficiently handle, control and process small volumes of fluids on

the micrometre scale [11] and more specifically for their facility in producing

monodisperse droplets, with volumes ranging from femtolitres to nanolitres, at

kilohertz to megahertz rates [12]. Significantly, in the context of the current dis-

cussion, the dimensions of these droplets can be made to match those of living

cells (1–150 mm) [9]. In this mini-review, we highlight recent progress in the appli-

cation of droplet-based microfluidic techniques (incorporating both single and

double emulsion templates) for artificial cell generation. We also discuss selected

methods that to date have only been achieved using conventional technologies,

but which could eventually be reproduced using microfluidic components.
2. Droplet-based microfluidics
Since the first report of monodisperse droplet formation in microfluidic chan-

nels by Thorsen et al. [13], a diversity of chip- and capillary-based systems

have been used to produce, load, process and assay droplet populations for

quantitative experimentation in the chemical and biological sciences [12,14].

Beyond the critical advantages of compartmentalization, monodispersity and

high-throughput generation, the ability to perform functional operations on

droplets (such as reagent mixing, droplet splitting, sampling, fusion, dilution

and sorting) has further enlarged the spectrum of possible applications of

both passive and active droplet-based microfluidic systems [12,14,15].

As noted, droplet-based microfluidic systems have been used to perform a

wide range of biological and chemical experiments [14,16]. These include high-

throughput biochemical assays [17–19], protein crystallization studies [20],
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Figure 1. The application of droplet-based microfluidics in chemistry and biology. (a) A cell-based enzymatic assay performed within a droplet containing a single
cell. After photolysis, intracellular enzyme is released into the droplet and reacts with a substrate to form a fluorescent product. (b) A droplet-based microfluidic
system for high-throughput cell sorting. (c) Photograph of protein crystals formed in a microdroplet after chaotic mixing. (d ) Segmented-flow PCR where droplets
are motivated through alternating temperature zones to perform DNA denaturation, primer annealing and template extension. (e) Images of polyTPGDA ((i) – (iv))
and agarose discs (vi) produced in droplet-based microfluidic reactors. ( f ) Core – shell structures, also known as double emulsion, generated using glass capillaries.
(g) Multiple emulsions generated using scalable microcapillary devices: scale bar is 200 mm. (h) Cell-free protein expression within a double emulsion: (i) water-
soluble protein RFP, ((ii)(iii)) mReB-RFP protein adhering to hydrophobic regions. Images adapted from [20 – 23,25,28 – 30].
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cell-based enzymatic assays [21], DNA amplification [22],

the synthesis of microspheres [23] and core–shell structures

[24–28] and the bespoke synthesis of monodisperse nano-

materials (figure 1a–g). Additionally, drugs, green fuels

and high value biomaterials like proteins and antibodies

have also been produced using droplet-based reactors

[12,14,30] (figure 1h).
3. Artificial cells: the basics
Beginning with the idea that an artificial cell is an entity that

can mimic some of the functions and structures of a living

cell, it is evident that the design of an artificial cell requires

a complete understanding of cell biology and the ability to

simplify the complexity associated with cellular structure

and function [31,32]. In this respect, artificial cells themselves

can also be used as platforms to understand cellular mechan-

isms via bottom-up methods [8,32]. Figure 2a illustrates a

simplified representation of a living cell. The cartoon shows

a membrane that provides a boundary between the external

and internal environments, where cellular processes occur.

Significantly, the membrane is an active component,
containing membrane receptors that move, communicate

and sense their local environment. The inner compartment

contains genetic material and enzymes responsible for cellular

processes such as protein synthesis, replication and metab-

olism or growth-related processes. Furthermore, the cell may

possess a cytoskeleton, a dynamic structure that gives a

shape to the cell, anchors organelles and aids in the movement.

Finally, as with all living systems, an artificial cell requires

energy to perform its functions and maintain ‘life’. A strategy

to unravel cell complexity using a bottom-up approach has

been proposed by Brizard et al. [33] and is shown in

figure 2b. In their approach, four component steps are used

to design an artificial cell. Each defines properties that a cell-

like system must possess to guarantee and maintain its

vital properties.
4. Artificial cell membranes
All cells possess a cell membrane which defines the boundary

between the extracellular environment and the aqueous

internal compartment [34]. The membrane itself provides a

non-polar environment where anchored or embedded channel
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Figure 2. Artificial cell architecture. (a) Cartoon representation of an artificial cell incorporating a membrane that defines the boundary between the outer and inner
environments (where cellular processes occur). The semi-permeable membrane contains receptors, which can sense and interact with the external world. The cell
interior is connected to a frame, called the cytoskeleton, which imparts structure to the cell. (b) A proposed strategy to unravel cell complexity via a bottom-up
approach involving artificial cells. Image adapted from [33].
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proteins, that control the flow of ions across the membrane,

reside. Transport of ions or small molecules across the cell

membrane is of crucial importance for the majority of cellular

processes and, in a living cell, transport across the membrane

is performed by a variety of passive and active mechanisms.

The former are governed by the permeability of the cellular

membrane relying on diffusion, facilitated diffusion or osmo-

sis. Conversely, active mechanisms require an energy input

that activates a membrane protein responsible for the transport

of a species flowing against a chemical gradient [34].

Over the years, much effort has focused on reproducing

artificial membranes that resemble the membrane of a living

cell in both function and morphology. Part of this effort has

centred on reconstructing the exact composition of natural

membranes and accessing the ability to incorporate protein

channels, while others have tried to reproduce the ability to

respond to external stimuli through synthetically derived

materials [1]. In this respect, vesicle-like structures, made

from amphiphilic molecules (assembled to form ordered and

closed bilayers) have been used as cell membrane mimics

[35,36]. In the following sections, we review recent studies

involving the use of droplet-based microfluidic techniques

for lipid (liposome) and polymeric (polymersome) vesicle for-

mation. It is also important to mention that some researchers

have achieved selective permeability and encapsulation of bio-

logical components in structures that do not incorporate a

membrane. Such structures, known as coacervates, represent

powerful models as protocells [37], for mimicking molecular

crowding and have also recently been generated using

droplet-based microfluidic tools [38].
4.1. Artificial cells based on liposomes
The majority of experimental studies on protocell models

incorporate bilayer membranes constructed from one (or

occasionally two) lipid species [32,39]. Lipidic vesicles, also

known as liposomes, are structures derived from lipid mol-

ecule assembly and contain a thin bilayer membrane tens of

nanometres thick [40]. Giant liposomes or giant unilamellar

vesicles (GUVs; having diameters in excess of 10 mm) are com-

parable in size to eukaryotic cells, and it has been shown that

they can efficiently encapsulate biomaterials such as DNA,

RNA and proteins [41]. First synthesized in bulk reactors

using conventional methods, such as electroformation [42],

freeze-drying [43] and sonication [44], conventional liposome
production is time consuming and irreproducible and results

in polydisperse vesicle populations containing multilamellar

structures [41]. Microfluidic methods have been shown to

offer unprecedented control over vesicle size, encapsulation

efficiency and membrane homogeneity [40]. The first droplet-

based microfluidic system for forming unilamellar liposomes

was reported by Tan et al. [45] (figure 3a). This study demon-

strated the feasibility of encapsulating proteins, beads and

cells in liposomes with diameters ranging from 27 to 55 mm,

and facilitating ion exchange between the inner compartment

and external environment [45]. Two years later, glass capillary

devices, used for the generation of core–shell structures [25],

were adopted to form liposomes from double emulsion

templates [46]. Using a two-step emulsification process per-

formed entirely on-chip, liposomes with diameters ranging

from 20 to 150 mm could be generated in a reproducible fashion

(figure 3b,c). Subsequently, a wide variety of droplet-based

microfluidic strategies have been employed for liposome

generation [9,40,41]. The majority of these reports have demon-

strated the possibility of generating liposomes loaded with

biologically active compounds (such as DNA and enzymes)

and able to host proteins within the lipid membrane. For

example, Stachowiak et al. [48] described an elegant pulsed-

jetting method [49] to generate monodisperse giant vesicles

loaded with a-haemolysin monomers, which spontaneously

migrate towards the lipid membrane and form protein pore

useful for transporting solutes across the vesicle boundary

(figure 3d).

Microfluidic tools have also been used to fabricate layer-by-

layer asymmetric lipid vesicles. In 2003, Pautot et al. developed a

method for systematicallyengineering vesicles with asymmetric

bilayers where each leaflet was assembled independently [50];

in 2011, Matosevic et al. presented an assembly-line strategy

able to achieve a completely parametrized and reproduci-

ble phospholipid vesicle generation [51]. Later on, the same

authors [47] demonstrated the formation and subsequent

(phospholipid) stabilization of droplets using a flow focusing

device. After a defined delay, droplets could be trapped

within pockets and the continuous phase gradually exchanged

with a secondary phase containing a different type of phospho-

lipid that deposits on the previously formed bilayer. Following

this simple strategy, the authors demonstrated the generation of

multilamellar asymmetric vesicles (figure 3e). More recently, a

microfluidic approach involving on-chip electroformation

demonstrated the generation, handling and analysis of
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Figure 3. Liposome generation using droplet-based microfluidics. (a) Droplet emulsion transfer method. (b,c) Formation of a phospholipid-stabilized W/O/W double
emulsion in a glass microcapillary device. A toluene and chloroform mixture allows phospholipid dissolution and subsequent solvent evaporation. As the solvent layer
becomes thinner during evaporation, phospholipids concentrate forming a bilayer. (d ) Schematic of a pulsed jet made from a piezoelectric actuator connected to a
pipette and immersed in a two-phase system containing phospholipids. When a pulse is produced, a droplet of one liquid type (grey) is generated within a second
phase (green) and a bilayer automatically generated. (e) Asymmetric liposome generation. (i) Cartoon showing a trap containing a droplet of aqueous cytoplasmic
material (AQcy, blue) in a mixture of oil – lipid 1 (yellow) that stabilizes the droplet. (ii) Oil – lipid 2 (green) mixture replacing oil – lipid 1. (iii) Extracellular aqueous
phase (AQex, blue) replacing oil – lipid 2 and (iv) while the AQex/oil interface traverses the array, it envelopes a second interfacial monolayer composed of oil – lipid 2
that deposits on the trapped droplet. Images adapted from [41,45 – 47].
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interaction dynamics of the pore-forming antimicrobial peptide

melittin in trapped GUVs containing two types of lipid

molecules [52]. Other examples of artificial cells based on

liposomes are presented in the following sections, where

examples of lipid vesicles employed to mimic cellular processes

are reported.
4.2. Artificial cells based on polymersomes
Owing to their similarity to the natural components contained

within cell membranes, phospholipidic vesicles represent a

useful method for producing cell mimics [53], despite their sus-

ceptibility to breakage and oxidation [35]. Polymeric vesicles,

also known as polymersomes, are obtained by self-assembly

of amphiphilic block copolymers and represent an interesting

liposome proxy due to their enhanced stability and functional-

ity [54]. Depending on the relative length of the hydrophobic
and hydrophilic chains, they are able to assemble (in aqueous

environments) into a variety of structures such as vesicles

and wormlike or spherical micelles [55]. Furthermore, mem-

brane thicknesses (from a few nanometres to a few

micrometres), elasticity, permeability and mechanical stability

can all be tuned by control of the chemical composition of the

chosen polymer [56].

Extensively employed in foods, drugs and cosmetics [57],

polymersomes also play a relevant role as cell mimics

[58–60]. Again, droplet-based microfluidics has been shown

to be an extremely valuable tool in the rapid and reproduci-

ble production of such species [61]. For example, Shum et al.
[62] used an ‘all-in’ glass capillary format to generate

monodisperse vesicle structures of amphiphilic diblock copo-

lymers. The authors elegantly showed the formation of a

stable core–shell structure originating from a water–oil–

water (W/O/W) double emulsion system containing a
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Figure 4. Polymersome generation using droplet-based microfluidics. (a) Glass capillary device used for PEG-b-PLA polymersome production. Dewetting transition of
double emulsion consisting of an aqueous droplet surrounded by a shell of PEG-b-PLA diblock copolymer dissolved in a toluene/chloroform mixture. The diblock
polymer is dispersed in a mixture of chloroform and toluene, and after double emulsion generation, chloroform evaporates and toluene detaches leaving behind a
bilayer shell. Scale bar, 10 mm. (b) Confocal microscope image showing triple polymersomes. (c) Protein expression and delivery of expressed proteins within
polymersomes. Protein release is triggered by osmotic shock, with release tails being clearly visible. This is possible thanks to the semi-permeability of the
PEG – PLA bilayer membrane which allows the passage of small molecules like water when the two compartments have different osmolarities. (d ) Microfluidic
formation of diblock copolymer-stabilized W/O/W double emulsions. Scale bar, 20 mm. (e) Schematic of different types of vesicles containing NPs obtained
using capillary device. Vesicles containing hydrophilic NPs in the aqueous core (1), vesicles with hydrophobic NPs in the organic shell (2), vesicles with hydrophilic
NPs in the aqueous core and hydrophobic NPs in the organic shell (3). Images adapted from [59,63 – 66].
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poly(ethylene glycol)–poly(lactic acid) (PEG–PLA) diblock

after undergoing a dewetting transition (figure 4a). The

diblock polymer is dispersed in a mixture of chloroform

and toluene, and after double emulsion generation, chloro-

form evaporates and toluene detaches leaving behind a

bilayer shell (figure 4a). In this study, the authors also

showed that the shell is able to respond to osmotic shock, a

characteristic of fundamental importance in the delivery of

encapsulated material. Indeed, the core method has since

been used to generate ‘multiple compartment’ polymersomes

[63], polymersome-in-polymersome structures [64] (figure 4b)

and polymersomes able to express and release proteins in

their interiors [59] (figure 4c).

In all these approaches, the solvent composition is a

critical parameter that cannot be balanced during experi-

ment using capillary-based devices. In this regard, Thiele

et al. [65] have demonstrated the ability to tune solvent
composition by using a glass-coated polydimethylsiloxane

(PDMS) microdevice, and have analysed how solvent compo-

sition affects the stability of the emulsion (figure 4d ).

This strategy also represents an interesting alternative to

capillary-based devices not only for the polymersome

formation but also for the generation of other double

emulsion systems.

In addition to the ability of polymersomes to react to

osmotic shock, PEG-b-PLA polymersomes and lipid vesicles

have also been enriched with nanoparticles (NPs). For

example, hydrophilic and hydrophobic magnetic NPs have

been introduced into the shell, the core or both, thereby trans-

ferring their magnetic properties to the entire vesicle [66]

(figure 4e). Moreover, both synthetic [67] and natural [60]

hydrogel materials have been encapsulated in the core, pro-

viding an inner solid scaffold within the entire vesicle that

can react to external stimuli (figure 5c).
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5. Artificial cytoskeletons
As previously noted, the cytoskeleton is a central component

in both eukaryotic and prokaryotic cells. Some researchers

have attempted to mimic this function by directly polymeriz-

ing cytoskeleton components encapsulated in lipid vesicles

(obtained via conventional approaches; figure 5a) [69–72].

Others have encapsulated hydrogels within lipid vesicles to

mimic cytoskeleton deformation and viscoelastic properties

[73,74] (figure 5b). Although numerous studies have tried to

fill vesicles with hydrogel matrices [33], only a few have

used microfluidic tools to exert control over the generation

process [60,67,68] (figure 5c,d ).
6. Mimics of cellular processes in artificial cells
Other essential features of living cells include DNA expression

and regulation, self-reproduction, phospholipid and nutrient

synthesis and energy generation from carbon sources [4].

Unsurprisingly, it is enormously challenging to mimic even a

small part of each of these features, but integration of know-

how from different disciplines has made some progress in

this respect. For example, in the late 1990s, the compartmenta-

lization of genes and all the basic biologic constituents used in

protein expression within small aqueous droplets dispersed

in an oil phase was demonstrated for the first time [75]. This
technique was named in vitro compartmentalization [76] and

elegantly mimicked the generation of proteins confined in

tiny, cell-like compartments (figure 6a). Since this time, custo-

mized DNA templates and commercially available cell-free

protein expression systems have been successfully combined

into droplets formed within microfluidic formats, generating

water-soluble proteins such as green fluorescent protein

(GFP), rsGFP (red-shifted GFP) [77,82], organophosphorus

hydrolase enzyme (OpdA) [78] and prokaryotic proteins

with membrane affinity expressed both in single [79] and

double emulsion formats [30,59,80] (figure 1h). In the same

water-in-oil emulsions, Ichihashi et al. [83] demonstrated repli-

cation of genomic RNA, involving 600-generation replication

experiments in which mutations were spontaneously intro-

duced into RNA by replication error (figure 6b). In 2004,

Noireaux et al. demonstrated bacterial cell-free protein

expression in liposomes over extended periods. This was

made possible by inserting pore channels within the lipid

membrane that allowed exchange of material with an external

feeding solution [84]. Similarly, in 2014, Arriaga et al. demon-

strated the generation of GUVs within a droplet-based

microfluidic device and the insertion of an a-haemolysin

pore channel within the phospholipid membrane [85]

(figure 6c). The ability of polymersomes to respond to external

stimuli has also been achieved by inserting light-sensitive com-

ponents into the polymeric layer, as demonstrated by Kamat

and co-workers, who integrated a porphyrin protein into a
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polyethylene oxide–polybutadiene diblock copolymer mem-

brane [86] (figure 6d). Subsequent addition of antibodies and

ligands into the polymeric membrane then confers sensing

and targeting properties [87] (figure 6e).

Multistep reactions that in a simple sense resemble natu-

ral enzymatic pathways have recently been performed within

polymersome-in-polymersome structures generated via
emulsion-centrifugation [88]. Specifically, functional eukary-

otic cell mimics could be created by loading functional

organelle mimics inside polymersomes, with the authors suc-

cessfully demonstrating an original three-enzyme cascade

reaction (figure 6f ). Moreover, self-reproduction of supramo-

lecular giant vesicles has also been elegantly demonstrated by

Kurihara and co-workers, who initiate the amplification of
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8
encapsulated DNA within a self-reproducible cationic giant

vesicle [81]. Through addition of a vesicular membrane precur-

sor, growth and spontaneous division of the giant vesicle

occurs and is accompanied by distribution of the DNA to the

daughter giant vesicle (figure 6g). Finally, Lentini et al. [89]

have also demonstrated the generation of artificial cell sys-

tems capable of sensing chemical signal and regulating gene

expression of living cells like Escherichia coli. The artificial cell

is therefore able to expand the senses of E. coli by translating

a chemical message, that E. coli cannot sense on its own, to a

molecule that activates a natural cellular response.
Interface
Focus

6:
7. Conclusion
The intimate marriage and cooperation of science and

technology are of fundamental importance in better
understanding the structure and function of living cells. Artifi-

cial cells, minimal cells, protocells and other ‘cell-like’ systems

not only provide insights into the origin of life [53,90], but also

are beginning to have a dramatic impact in contemporary bio-

science as cell and organ replacements [91] and novel

therapeutic agents [92]. In this respect, it is clear that over the

last decade, droplet-based microfluidic methods have shown

much potential for generating and engineering such systems

with high precision and in a manner compatible with relevant

biological materials. Although technological developments are

still in their infancy, the ever-increasing activity within the field

suggests that droplet-based microfluidics will soon become an

indispensable tool in the generation of sophisticated artificial

cells.
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