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SUMMARY
We present a sheathless, microfluidic imaging flow cytometer that incorporates stroboscopic illumination for
blur-free fluorescence detection at ultra-high analytical throughput. The imaging platform is capable of multi-
parametric fluorescence quantification and sub-cellular localization of these structures down to 500 nm with
microscopy image quality. We demonstrate the efficacy of the approach through the analysis and localization
of P-bodies and stress granules in yeast and human cells using fluorescence and bright-field detection at
analytical throughputs in excess of 60,000 and 400,000 cells/s, respectively. Results highlight the utility of
our imaging flow cytometer in directly investigating phase-separated compartments within cellular environ-
ments and screening rare events at the sub-cellular level for a range of diagnostic applications.
INTRODUCTION

Flow cytometry is widely recognized as the gold-standard tech-

nique for the analysis and enumeration of heterogeneous cellular

populations and has become an indispensable tool in diagnos-

tics (Hasegawa et al., 2013), rare-cell detection (Boraldi et al.,

2016), and single cell proteomics (Gauthier et al., 2008). Although

contemporary flow cytometers are able to analyze many thou-

sands of cells per second, with classification based on scattering

or fluorescence criteria, the vast majority require the processing

of unacceptably large sample volumes and do not allow the

acquisition of spatially resolved information.

Imaging flow cytometry (IFC) is a hybrid technology, incorpo-

rating the advantages of microscopy and flow cytometry, for

high-throughput imaging of cells within flowing environments.

Such an approach provides for enormous enhancements in in-

formation content but is accompanied by a number of techno-

logical challenges, including the need to acquire high-resolution

(blur-free) images of single cells moving at high speed, the inte-

gration of multiple imaging modes (such as fluorescence, bright-

field, and dark-field imaging) and the realization of adequate

detection sensitivities when using short exposure times (Basiji

et al., 2007). Commercial imaging flow cytometers (notably, the

Amnis ImageStream X) have been shown to be successful in

capturing images of single cells in flow (Barteneva et al., 2012).

Through the use of hydrodynamic focusing, wide-field sample

excitation, and time delay and integration charge-coupled de-

vice (TDI-CCD) image sensors, such systems can provide
This is an open access article und
high-resolution and multiplexed imaging capabilities at the

expense of low to moderate throughput (i.e., up to 5,000 cells/

s at 203magnification) (Basiji et al., 2007). Significantly, imaging

flow cytometers have been used to good effect in the detection

and analysis of tumor cells (van Beers et al., 2014; Hui et al.,

2014), notably in acute leukemia (Grimwade et al., 2017).

Compared with traditional (single-point) flow cytometry tech-

niques, an imaging capability allows the detection of chromo-

somal signaling, antigen localization, and other events that occur

within the cell (van Beers et al., 2014; Grimwade et al., 2017).

Finally, it should also be noted that imaging cells in flow avoids

the requirements of membrane staining, which is especially

important for performing image segmentation under static con-

ditions (Berchtold et al., 2018).

As noted, a key drawback associated with conventional imag-

ing flow cytometers is their low analytical throughput (typically

between 2,000 and 3,000 cells/s at 203 magnification); more

than one order of magnitude lower than non-imaging flow cytom-

eters. Accordingly, a major challenge is to ensure high-detection

sensitivities while also achieving high-analytical throughput.

High-throughput imaging can be used to provide significant bio-

logical insight in the quantitative analysis of blood. A good

example in this respect is the discrimination of leucocyte subsets

via cellular DNA fluorescence analysis. Leucocyte sub-popula-

tions can be discriminated using the IFC approach because of

their high-internal complexity and variations in cell size. Indeed,

in contrast to neutrophils, lymphocytes are small and exhibit low

internal complexity (López-Riquelme et al., 2013). To this end,
Cell Reports 34, 108824, March 9, 2021 ª 2021 The Author(s). 1
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Figure 1. High-throughput multiparametric imaging flow cytometry

(A) The imaging flow cytometry platform integrates stroboscopic multi-color light sheet illumination, amicrofluidic cell focusing system, a dual-color beam splitter,

and a CMOS camera.

(B) Top view of the microfluidic channel used to position the cells in the imaging plane. The microfluidic device consists of a straight, high-aspect ratio channel

with one inlet and one outlet. Through the use of a viscoelastic carrier fluid, cells can be precisely focused in the center plane of the channel. Cells are imaged

upstream of the outlet using stroboscopic light sheet illumination, with image processing being used for cell identification and spot foci counting.

(C) Representative dual-color fluorescence images of 293T cells expressing mNeonGreen (mNG) (left, top) and mRuby2 (middle, top) tagged proteins. The

corresponding merged image is shown in the top right panel. Images in the lower two panels show the simultaneous acquisition of fluorescence and bright-field

images at high-throughput. Scale bars, 5 mm.
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recent studies have leveraged the capabilities of microfluidic

systems to manipulate, order, and process micrometer-sized

objects in a controlled and high-throughput manner. For

example, Rane et al. (2017) recently presented an imaging flow

cytometer integrating inertial focusing (for the sheathless manip-

ulation of cells) and stroboscopic fluorescence imaging for the

analysis of large numbers of rapidly moving cells, with a

maximum imaging throughput of 50,000 cells/s. However, use

of a 103 objective restricted imaging resolution to above the

diffraction limit. Moreover, Miura et al. (2018) reported the use

of light sheet excitation of flowing cells within a mirror-

embedded microfluidic device. Such a platform was used to

extract fluorescence images of rapidly moving adenocarcinoma

cells at throughputs approaching 10,000 cells/s. Instead of using

CCD cameras for imaging, images can also be reconstructed

from photomultiplier tube (PMT) signals through spatiotemporal

transformation. In this way, Han and Lo (2015) produced high-

resolution fluorescence and scatter-based images of moving

cells at a throughput of approximately 1,000 cells/s. To preserve

image quality when cells are moving at high-linear velocities, a

free-space pulse-stretching method called free-space angular-

chirp-enhanced delay (FACED) (Wu et al., 2017) has recently

been used for time-stretch imaging, as well as for fluorescence

imaging of rapidlymoving beads (Goda et al., 2012). Additionally,

laser-scanning confocal fluorescence microscopy based on fre-

quency-division multiplexing has been used for high-throughput

confocal fluorescence imaging of cells at frame rates of 16,000
2 Cell Reports 34, 108824, March 9, 2021
frames/s (Mikami et al., 2018). More recently, a deep-learning-

assisted, image-activated cell sorting platform reported real-

time single-cell sorting of microalgal and blood cells on the basis

of intracellular protein localization (Nitta et al., 2018). That said, it

should be noted that all the above platforms, in addition to

requiring exotic and often complex optical hardware, have only

been used to report gross morphological features, such as

cell/nucleus areas and perimeters. Indeed, the localization of

sub-cellular features equal to or less than 1 mm in size (with mi-

croscopy image quality) and at throughputs in excess of

10,000 cells/s has yet to be reported. To this end, we herein pre-

sent a high-throughput imaging flow cytometer (Figure 1)

capable of multiparametric imaging (multi-color fluorescence

and bright-field analysis), accurate cell sizing, and, most impor-

tant, sub-cellular localization detection of features close to the

diffraction limit. To demonstrate utility, we apply the developed

platform to the ultra-high-throughput localization of sub-micro-

meter sub-cellular structures in both yeast and human cells.

RESULTS

Microfluidic design and characterization of cell focusing
The performance of our IFC platform was showcased through

high-throughput quantitative imaging analysis of cytoplasmic

RNA granules in yeast (stress granules) and human cells (P-

bodies). To afford acquisition rates in excess of 10,000 cells/s,

we combined stroboscopic illumination, a technique able to



Table 1. Performance characteristics of the imaging flow cytometers

Stroboscopic imaging flow cytometer

Magnification 403 203 153 103

Numerical aperture 0.75 0.5 0.5 0.5

Pixel size, mm 0.16 3 0.16 0.33 3 0.33 0.43 3 0.43 0.65 3 0.65

Field of view, mm 332 3 25 665 3 25 887 3 25 1331 3 25

Imaging rate, cells/s 5,350 10,900 20,500 61,000

ImageStream Mark II imaging flow cytometer

Magnification 603 403 203

Numerical aperture 0.9 0.75 0.5

Pixel size, mm 0.3 3 0.3 0.5 3 0.5 1 3 1

Field of view, mm 40 3 170 60 3 128 120 3 256

Imaging rate, cells/s 1,200 2,000 4,000

Resource
ll

OPEN ACCESS
generate blur-free images of objects moving at high-linear veloc-

ities (Rane et al., 2017), with elasto-inertial three-dimensional

(3D) cell focusing (Holzner et al., 2017, 2018) to provide for

enhanced control of both flow velocities and cell position within

the axial depth of focus of the objective lens (Figures 1A and 1B;

Figures S1A and S1B). A schematic of the microfluidic device is

shown in Figure 1B, consisting of a single high-aspect ratio

channel. The microfluidic flow path is simple in construction,

incorporating a single channel (90 mm long, 665 mm wide, and

59 mm deep) containing two switchbacks and an imaging zone

located close to the outlet. Typically, parallel microfluidic geom-

etries require precise distribution of cells among all channels.

This can be challenging, as cells must be uniformly distributed

to maximize throughput. The use of only a single microfluidic

channel avoids problems associated with evenly distributing

sample across multiple channels. This in turn removes imaging

losses due to finite inter-channel spacing in the field of view,min-

imizes channel blockages due to small cross sections, and leads

to significant increases in analytical throughput. Additionally, it is

important to note that elasto-inertial focusing provides for con-

trol over the axial position of cells within the microfluidic channel

and operates within a lower flow rate regime than related inertial

focusing schemes (Di Carlo et al., 2007). These features are ideal

for high-resolution IFC, as signal collection can be achieved us-

ing longer exposure times. Multiparametric detection involves

both bright-field imaging, for sizing and morphology measure-

ments and multi-color fluorescence detection, for sub-cellular

localization detection (Figure 1C; Video S1).

Single-plane focusing of cells (Figures S1A and S1B) was

achieved through use of a viscoelastic polyethylene oxide

(PEO) carrier solution. Figure S1A presents images of 10 mm

PS beads immersed in either deionized (DI) water or 1,000

ppm, 0.4 MDa PEO carrier fluid, moving at a volumetric flow

rate of 360 mL/min. For water, and under inertial flow conditions,

beads are focused into two planes (labeled A and B) (Di Carlo

et al., 2007). However, when using a viscoelastic carrier fluid,

all particles are focused to the center plane of the channel. To

confirm single-plane focusing at the center of the channel cross

section, bead intensities in the z direction weremeasured using a

spinning disk confocal microscope and are presented in

Figure S1B.
An important aspect when imaging cells moving at high-linear

velocities is maintenance of a homogeneous flow profile across

the channel width. Such a profile guarantees that the cells move

across the imaging region at a uniform speed, thus ensuring cor-

rect sampling. To assess the uniformity of flow profiles across

the channel, flow velocities were measured using bright-field im-

aging. Flow profiles of cells suspended in 0.4 MDa, 500 ppm

PEO and 1 MDa, 500 ppm PEO solutions and moving at veloc-

ities between 0.01 and 0.25 m/s were recorded and are shown

in Figure S1C. For all flow rates, the corresponding flow velocity

profiles are homogeneous across the channel and, as expected,

bend slightly toward the channel walls. Examination of two

different molecular weight PEO solutions over a wide range of

flow rates indicates that focusing at the channel centerline re-

mains efficient when using a low-molecular weight PEO (1

MDa) solution at flow rates between 0.01 and 0.1 m/s

(Figure S1D). Computational fluid dynamics simulations were

further used to confirm experimental observations of flow distri-

bution uniformity in the region where cells enter the microchan-

nel (Figure S1E). Significantly, the coefficient of variation (CV)

of the mean velocity along the detection channel is negligible

(<0.99%), confirming a uniform flow distribution throughout the

entire microfluidic device.

Analytical throughput and sensitivity
To eliminate motion blur when imaging rapidly moving cells, we

stroboscopically manipulated the excitation beam between 10

and 20 ms. This allowed precise cell segmentation (Figure S2A)

and extraction of high-resolution images of cells moving at ve-

locities between 0.03 and 0.05 m/s with a spatial blur of no

more than 500 nm (Figure S2B). Additionally, light sheet illumina-

tion was used to maximize excitation efficiencies by concen-

trating photons to a small volume, resulting in signal intensities

one order of magnitude higher than when using standard epi-

fluorescence excitation (Figures S2C and S2D). To ensure the

efficient imaging of every single cell within a sample, the vertical

dimension in the region of interest (ROI) was set to be slightly

larger than the maximum diameter of a cell. As we are interested

only in a narrow ROI along the focused excitation line (full width

at half maximum [FWHM] of the Gaussian laser beam is 5 mm;

Figure S2D), we were able to use this effect to increase the frame
Cell Reports 34, 108824, March 9, 2021 3



Figure 2. Performance of the imaging flow cytometer

(A) Size distribution of Jurkat cells stained with Alexa Fluor 488 WGA and imaged with a 103 0.5 NA objective.

(B) Coefficient of variation for measured fluorescence intensities at three different magnifications: 103 0.5 NA, 203 0.5 NA, and 403 0.75 NA. It should be noted

that the CV for the 403 0.75 NA objective is similar to that obtained when using a commercial FACS system (MoFlo Astrios EQ, Beckman Coulter), demonstrating

that fluorescence variations are reduced when using a higher magnification objective.

(C) Variation in analytical throughput as a function of magnification. An experimental maximum throughput of 61,000 cells/s for fluorescence imaging was

achieved when using a 103 0.5 NA objective at a frame rate of 4,888 frames/s.
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rate of the camera sensor. Values for the ROI, based on the

magnification of the objectives used, are provided in the Table

1. The effective exposure time is defined by the length of the

excitation pulses, with longer pulses resulting in higher signals

but increased motion blur, as shown in Figure S2B. Using such

an approach, we were able to probe the size and fluorescence

of labeled Jurkat cells at extremely high throughput. As shown

in Figure 2A, use of a 103 objective allows accurate assessment

of the size of Jurkat cells (mean size 12.6 mm) fluorescently

labeled with Alexa Fluor 488 wheat germ agglutinin (WGA).

Significantly, the mean cell diameter of 12.6 mm calculated

from Jurkat cells stained with Alexa Fluor 488 WGA (Figure 2A)

is close to the 14.2 mm value obtained from blur-free bright-field

images (Figure S3A) acquired from an analysis of a mixture of Ju-

rkat and human B-lymphoid cells. The CVs in mean cell diameter

extracted from fluorescence (23.5%) and bright-field (19.9%)

measurements are also similar, confirming the precision of

both imaging approaches in size determination. An additional

important observation is that the CV decreases at higher magni-

fications, as size can be measured more accurately using high-

magnification objective lenses (Figures S2E–S2H).

Themeasurement of theCV of fluorescence intensities at three

different magnifications (103, 203, and 403) highlights the

accuracy in fluorescence quantification compared with a high-

end commercial fluorescence-activated cell sorting (FACS) in-

strument (Astrios MoFlo, Beckman Coulter) operating at much

lower throughput of 5,000 cells/s (Figure 2B). Indeed, the CV

for the 403 0.75 NA objective perfectly matches that obtained

from the commercial instrument. We attribute the variation in

fluorescence intensity to variations in staining, as the same cell

sample yields an identical CV when analyzed with a FACS instru-

ment, pre-calibrated with fluorescent beads. A measured

maximum throughput of 61,000 cells/s was achieved when using

a 103 0.5 NA objective at a frame rate of 4,888 frames/s

(Figure 2C). Using 153 magnification, the measured throughput

was reduced to 20,561 cells/s because of the magnified field of

view (and lower frame rate). Significantly, when using such a
4 Cell Reports 34, 108824, March 9, 2021
magnification, sub-cellular localization of 1 mm cytoplasmic

granules can be achieved at a much higher throughput than

has been previously reported (Miura et al., 2018; Mikami et al.,

2018). Even when using 203 magnification, the measured

throughput (11,000 cells/s) and spatial resolution are 5 times

higher and 2 times higher, respectively, than achievable with

the Amnis ImageStream X when operating at 403magnification.

Indeed, the reported maximal throughput of the Amnis Image-

Stream X flow cytometer assumes a much larger pixel size

than in the present imaging flow cytometer and relatively dense

cell spacing. When using a 1,3313 90 mm ROI, the current plat-

form is successful in accurate size analysis of amixed population

of Jurkat and human B-lymphoid cells (in a 1:1 ratio) at rates in

excess of 400,000 cells/s (Figures S3B and S3C). Put simply,

the present system can image enormous numbers of rapidly

moving cells in an ultra-high-throughput manner with an imaging

resolution defined by a 103 magnification objective.

The ability to resolve different fluorescent intensities and

quantitatively measure low-fluorescence sub-populations is

most commonly used to assess the analytical sensitivity of a

flow cytometer. To this end, calibration was performed using

MESF (molecules of equivalent soluble fluorophores) beads,

yielding a detection sensitivity of 3,200 MESF units (Figures

S4A–S4D) at 0.05 m/s and a throughput of 61,000 particles/s.

By reducing the particle velocity and thus increasing the effective

exposure time, detection sensitivity can be increased signifi-

cantly, albeit at the expense of throughput (Figure S4E; Table

S1). Additionally, adoption of a dual-view optical configuration

allowed the implementation of a bright-field imaging modality

for the concurrent investigation of cell morphology (Figures

S4F–S4H).

Morphometric analysis of yeast and human cells
To evaluate the performance of the high-throughput imaging

flow cytometer in quantifying subtle changes in sub-cellular

structures, we analyzed the localization of stress granules and

P/GW-bodies in yeast and human cells, respectively. Stress



Figure 3. Variation in the number of P-bodies and stress granules in yeast cells and mammalian cells in response to external stimuli

(A) Flow cytometry images at 603magnification of yeast growing within the exponential growth phase (control) and within the stationary phase (starvation). Scale

bars, 5 mm.

(B) Percentage of yeast cells containing given numbers of aggregates, highlighting a clear difference between the control and starvation samples.

(C) Left: representative image at 203magnification of adherent 293T expressing mNG-AGO2 under control and arsenite condition for static imaging. Within each

image, cells weremanually segmented (pinkmask) for mNG-AGO2-positive cytoplasmic granule counting. Scale bars, 20 mm. Right: 293T cell images obtained in

the imaging flow cytometer at 153 magnification are automatically segmented (green mask) and processed. Scale bars, 10 mm.

(D) Percentage of adherent 293T cells containing given numbers of granules as a function of arsenite concentration under static (left) and in-flow imaging

conditions (right).

For (B) and (D), error bars represent the standard deviation.
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granules are cytosolic structures that form within yeast cells in

response to various stresses (such as starvation or oxidative

stress) by phase separation and are thought to contribute to

cellular adaptation by sequestering proteins and RNA to prevent

their degradation and allowing the efficient restart of cell growth

upon stress relief (Protter and Parker, 2016; Rabouille and

Alberti, 2017; Buchan, 2014). On the other hand, P-bodies are

small (500 nm to 1 mm in diameter) membrane-less cytoplasmic

organelles in human cells that are intimately involved in RNA

metabolism pathways, including RNA decay, stress-induced

translational inhibition, and RNA silencing (Protter and Parker,

2016; Parker and Sheth, 2007).

Initially, we chose to study the localization of yeast pyruvate ki-

nase, Cdc19, which aggregates in response to starvation and

heat stress (Figures 3A and 3B) (Cereghetti et al., 2018; Saad
et al., 2017). In line with previous experiments (Saad et al.,

2017), analysis of images at 603 magnification indicated that

Cdc19-GFP was found uniformly in the cytosol under control

conditions but formed between one and two granules per cell

during the stationary phase (48 h, long-term glucose starvation)

(Figure 3B). On the basis of these images, we calculated the sub-

cellular spatial resolution of our platform to be approximately

500 nm (Figure S5), a value essentially equivalent to that in static

imaging (Cereghetti et al., 2018). We next investigated the sub-

cellular localization of Argonaute 2 (AGO2), a protein from the

RNA silencing pathway and P/GW-body constituents in human

cells (Chen et al., 2009; Li et al., 2008). As previously reported

(Leung and Sharp, 2013), 293T cells stably expressing fluores-

cently tagged AGO2 (mNeonGreen-AGO2) exhibit both a diffuse

cytoplasmic emission pattern along with one to three granular
Cell Reports 34, 108824, March 9, 2021 5
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cytoplasmic structures per cell (characteristic of P/GW-bodies),

features that are absent in control cells expressing only free

mNeonGreen (mNG) (Figure 3C). Several stress-activated kinase

pathways known to be activated in cancers (e.g., p38, AKT)

directly control Argonaute shuttling and transfer into P/GW-

bodies and stress granules by direct phosphorylation (Horman

et al., 2013; Zeng et al., 2008). Among such stresses, oxidative

stress induced by arsenite treatment has been previously shown

to increase the number of AGO2-positive RNA granules in cells

(Detzer et al., 2011). Indeed, treatment of cells with arsenite

does lead to a dose-dependent increase in the number of

mNG-AGO2-positive granules per cell, as detected by static

fluorescence microscopy (Figures 3C and 3D, left panels) and

by high-throughput IFC (Figures 3C and 3D, right panels). Here

it should be noted that the different cell morphology (spherical

versus flat cells) during image acquisition, as well as the image

post-processing approaches (manual versus automatic seg-

mentation and granule counting), may explain the different pro-

portion of AGO2-positive granules per cell between the static

imaging and imaging flow cytometry analyses. That said, it is

evident that our approach, comparedwith static imaging, affords

equivalent quantification of sub-micrometer, sub-cellular varia-

tions (Figure S5) in single mammalian cells but at dramatically

improved throughput of 20,000 cells/s.

We also assessed the performance of our high-throughput IFC

platform for dual-color co-localization assays in mammalian

cells. We chose to investigate the sub-cellular localization of

two RNA binding proteins; Trinucleotide Repeat-Containing

Gene 6A protein (TNRC6A) and AGO2 in 293T cells. TNRC6A

protein is a direct AGO2 interactor and has been shown to co-

localize with mAGO2within cytoplasmic RNA granules (Jakymiw

et al., 2005). For this purpose, we co-expressed mRuby2-

TNRC6A, mRuby2-AGO2, or free mRuby2 (as a control) in

293T cells stably expressing mNG-AGO2 or mNG (control sam-

ples) and performed co-localization analysis by quantifying the

number of positive granular structures for each fluorescence

channel (Figure 4) or the pixel intensity correlation in a large

cell population (Figure 5).

Control experiments with 293T cells expressing mNG

(Figure 4A, panels 1, 3, 5, and 7) and/or mRuby2 (Figure 4A,

panels 3 and 4) show the expected characteristics of each pro-

tein fluorophore with around 80%of cells with no detectable foci.

In sharp contrast, and as previously shown in Figure 3, mNG-

AGO2 expressing cells exhibit one (56.4% of the cell population)

or two (12.3%) cytoplasmic foci (Figure 4A, panel 2). mRuby2-

AGO2 share a similar distribution with a cell population exhibiting

one (67.1%) or two (13.2%) cytoplasmic foci (Figure 4A, panel 5).

On the other hand, mRuby2-TNRC6A cells display a higher
Figure 4. Dual-color IFC for high-throughput co-localization studies

293T cells expressing mNG and mNG-AGO2 are transfected with different mRub

(A) Granule counts for green and red channels, with the y axis representing p

localization states of the corresponding transfected cells. Small image panels sho

provided in the large image on the right-hand side. Scale bars, 10 mm. Error bars

(B) Percentage of mNG-positive granules in mNG-AGO2 cells co-expressing mR

(C) Percentage of mRuby2-positive granules in mRuby2-TNRC6A cells co-expre

For (B) and (C) we represent statistically significant difference (ns, non-significan

acquired at 203 magnification.
proportion of cytoplasmic foci per cell (one [58.4%], two

[28%], or three [7.9%]) than mRuby2- or mNG-tagged AGO2

(Figure 4A, panels 7 and 8). We demonstrate that in mNG-

AGO2 cells, the number of granules per cell significantly

increases with co-expression of mRuby2-AGO2 and mRuby2-

TNRC6A, compared with co-expression of mRuby2 alone

(Figure 4B). Importantly, although the change in mean percent-

ages is modest (Figure 4B; 58% versus 52% for the one-granule

category), it is associated with a highly significant p value (p <

0.000001), demonstrating that our IFC platform could indeed

detect statistically significant and subtle sub-cellular localization

changes (originating from distinct proteins) within a single cell, at

high-spatial resolution and at a throughput of 20,000 cells/s,

when using a 0.5 NA 153 objective. However, no significant

change was observed in the distribution number of mRuby2-

TNRC6A-positive granules when co-expressed in mNG-AGO2

or mNG cells (Figure 4C). Importantly, by quantification of

granule co-localization percentage in individual cells, we show

that mRuby2-TNRC6A, or mNG-AGO2, foci co-localize with

mNG-AGO2 foci at much higher percentages (51.3% and

45.6%, respectively), than the control co-expressing the free

fluorescent protein (13%–23%) (Figure S6). This confirms that

both proteins associate with overlapping RNA granule compart-

ments as previously reported (Nishi et al., 2013).

We then investigated whether images extracted from our im-

aging flow cytometer could be used to detect dual-color protein

co-localization among a large cell population and under the

aforementioned treatment conditions. Such a strategy, in princi-

ple, allows high-throughput quantification of the correlated

spatial distribution (Aaron et al., 2018) of two distinct proteins

via automatic image analysis and without prior knowledge of

protein distribution over the population. We applied this strategy

to mNG or mNG-AGO2 293T cells co-expressing mRuby2,

mRuby2-AGO2, or mRuby2-TNRC6A (Figure 5). After high-

throughput image acquisition using our IFC platform, we per-

formed automatic segmentation and extracted intensities for

each x-y pixel coordinate of each segmented cell image, from

both green and red channels (Figure 5, left panel). We then

computed the corresponding correlation coefficient for each

cell, and plotted the R value distribution as violin plots for each

condition, noting the median (Figure 5, right panel, red dashed

line) and 25th and 75th percentile values (Figure 5, right panel,

side lines). Such a representation highlights protein co-localiza-

tion variability throughout the entire population (Figure 5, right

panel). We also present a dual-channel image and correspond-

ing two-dimensional histogram of red and green pixel intensities

(including R and p values) for a representative cell under each

condition. As expected from the prior analysis (Figure 4), we
y-tagged constructs.

ercentages of fluorescently labeled cells. Cartoons illustrate representative

w green (top) and red (bottom) channels, with an overlay of both channels being

represent the standard deviation.

uby2, mRuby2-AGO2, or mRuby2-TNRC6.

ssing mNG or mNG-AGO2.

t; *p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001). All images were
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Figure 5. Co-localization plots for single-pixel intensities of normalized mNG and mRuby2 pixel intensities

(A–F) From left to right, (i) representative dual-color image, (ii) corresponding scatterplots of single-pixel intensities, (iii) distribution of correlation coefficient (R)

between the two channel pixel intensity for the number of cells (n) investigated, and the median value indicated as dashed red line. The average (m) correlation

coefficient correlation value in each condition is reported in the graph as a means to quantify the degree of co-localization between fluorophores (Aaron et al.,

2018). The pixel intensity for each cell was normalized to its average intensity value, with only the top 10% of the brightest pixels being retained for analysis. Scale

bars, 10 mm. All images were acquired at 203 magnification.
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observe an increased correlation coefficient distribution for cells

co-expressing mRuby2-AGO2/mNG-AGO2 (Figure 5D) (R =

0.5391, n = 2,609) or mRuby2-TNRC6A/mNG-AGO2 (R =

0.6420, n = 2,977) (Figure 5F) compared with cells co-expressing

mRuby2-AGO2/mNG (R = 0.3560, n = 7,024) (Figure 5C) or

mRuby2-TNRC6/mNG (R = 0.3174, n = 4,994) (Figure 5E). Inter-

estingly, and as a control, we observed a high-correlation coef-

ficient for cells co-expressing mNG/mRuby2 (R = 0.4697, n =

11,191), as both monomeric fluorescent proteins are known to

exhibit diffuse patterns throughout the whole cell (Figure 5A). It

is worth mentioning that because of the extremely large number

of analyzed cells, the analysis of variance (ANOVA) reports a sta-

tistically significant difference in the R value distribution between

each experimental condition (Table S2). Accordingly, it is evident

that the developed imaging flow cytometer is able to deliver

high-quality images of single cells at high throughput, which in

turn allows the quantification of subtle changes in the number

and organization of small sub-cellular structure and the perfor-

mance of co-localization studies on large number of cells.

DISCUSSION

We have presented an experimental platform for cellular analysis

that successfully combines the power of optical microscopy in

extractingmorphological features at high resolution with the abil-

ity of conventional flow cytometry to rapidly screen large number

of cells. As previously noted, the key reasons why imaging flow

cytometers are normally unable to provide high-spatial resolu-

tion imaging at high throughput relate to motion blur, and thus

a trade-off exists between analytical throughput and optical res-

olution. To address this limitation, we have adopted strobo-

scopic illumination to acquire high-resolution and blur-free

images at ultra-high-throughput, which enables morphological

characterization of cells within heterogeneous populations.

The resolving power of any camera-based imaging system de-

pends sensitively on the sensor pixel size (Table 1). In the present

system, a 6.5 mm pixel size combined with the adoption of a 103

objective yields an effective pixel size of 0.65 mm. A 403 objec-

tive results in an effective pixel size of 0.16 mm, and use of a 603

objective results in an effective pixel size of only 0.108 mm. In

practice, the 403 objective is useful for mammalian cells

because they fit well within the field of view (3323 25 mm), while

the 603 objective provides higher magnification for small spe-

cies, such as yeast cells. On the basis of our measurements

that relate cell velocity to motion blur (Figure S2B), the operating

speed that provides for optimum throughput is approximately

0.05m/s. Significantly, when combinedwith a 153magnification

objective, the imaging system provides for both high-throughput

operation and high-resolution imaging (i.e., an effective pixel size

of 0.43 mm). In this regard, it is interesting to note that magnifica-

tion of 153matches the pixel size of the best commercial imag-

ing flow cytometer when using a 403 objective (Table 1). An

analysis of experimentally measured imaging rates as well as

resolution (determined by the objective) and the pixel size of

the camera are provided in Table 1. At 403 magnification, the

throughput of the gold-standard commercial imaging flow cy-

tometer is approximately 2,000 cells/s. For the same pixel area

conditions (Table 1), our stroboscopic imaging flow cytometer
provides an order of magnitude higher throughput (~20,000

cells/s) at 153 magnification. In this regard, it is important to

note that although some previously reported imaging flow cy-

tometers claim analytical throughput of 10,000 cells/s (Miura

et al., 2018), these values originate from extrapolations based

on the flow rate of hydrodynamic focusing and the frame rate

of the camera. Because cells are not equally spaced and travel

in a random order, the number of cells will not be constant for

each frame and thus cannot be used to accurately predict

throughput.

According to sampling theory, optimal spatial resolution is

achieved when the pixel size of the camera sensor is half the

diffraction-limited resolution of an optical system (Shannon,

1949). This is commonly termed the Nyquist limit and determines

the maximum acceptable pixel size needed to meet the optical

resolution of a specific objective. To fulfil the Nyquist criterion,

the size of the object of interest (such as a stress granule or P-

body) inside a cell should be between 500 nm and 1 mm in

size. Accordingly, to resolve an object 700 nm in size (the lower

boundary for stress granules and P-bodies), an objective with a

203 magnification and NA of 0.5 is required (Table 1). At this

magnification, the projected image will be 13.5 mm, and thus a

camera with a pixel size of 6.7 mm (13.5/2) or smaller is neces-

sary. Significantly, this valuematches perfectly with the objective

type and complementary metal oxide semiconductor (CMOS)

camera pixel size used in the current platform. This is an impor-

tant parameter when quantifying sub-cellular distributions of

stress granules, for example, those associated with certain func-

tions of the SAM domain and HD domain containing protein 1

(SAMHD1) (Hu et al., 2015), and in the localization of stress gran-

ules of several inhibitory immune checkpoint mRNAs (Franchini

et al., 2019).

Such localization-based applications are typically accom-

plished using conventional static (and low-throughput) imaging

approaches, since intensity-based measurements are unable to

provide concurrent information on protein localization of 1 mm

foci. In contrast, our platformmay be used for efficient and reliable

foci counting in radiation-damaged cells (Ivashkevich et al., 2012)

at a throughput two to three orders of magnitude higher than

currently possible. Additionally, the use of conventional micro-

scopy and manual cell counting in clinical blood analysis is both

labor intensive and low throughput. Adoption of our cytometry

platform for such task would allow quantification of physiological

and immunological function, again at a throughput two to three or-

ders of magnitude higher than currently possible.

As we have stressed, a lack of image information is the major

limitation of conventional flow cytometers, and thus platforms

that combine the high-throughput nature of conventional flow

cytometry with the high-resolution imaging features of an optical

microscope are extremely powerful. This is confirmed by our

high-throughput imaging of fluorescent RNA granules in flow,

with a spatial resolution close to the diffraction limit (Figure S5A).

The use of stroboscopic illumination to prevent motion blur is

highly effective but is characterized by a trade-off between

sensitivity and laser strobe duration (i.e., decreasing the strobe

pulse duration minimizes motion blur but also reduces sensi-

tivity). However, there is a trade-off between sensitivity and

throughput, as high-speed imaging requires shorter exposure
Cell Reports 34, 108824, March 9, 2021 9
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durations to obtain blur-free images. Issues related to motion

blur (and thus sensitivity) can also be circumvented to a large de-

gree by microfluidic-based fluid manipulations, which enable

efficient positioning of cells at low average velocities. In this

respect, we have demonstrated the utility of viscoelastic carrier

fluids within wide microfluidic channels for precise lateral and

axial positioning of cells at low volumetric flow rates. Indeed, it

should not be forgotten that such a simple and robust method

for focusing cells could be easily be implemented within a

portable flow cytometry platform, removing the need for exces-

sive volumes of sheath fluid.

Conventional flow cytometers are ill equipped to handle small-

volume clinical samples. Indeed, without an integrated micro-

scale fluid actuation system, it is challenging to manipulate small

sample volumes without causing appreciable cell damage. Ex-

isting flow cytometry approaches allow high-throughput analysis

of the phenotypic characteristics of a cell population but typically

require manymore cells than exist within a single embryoid body

(approximately 104 cells) (Wilson et al., 2014). Put simply, there is

no existing method that can easily quantify the phenotypic diver-

sity of single embryoid bodies. Moreover, analysis of small

numbers of precious cells is critical when probing cellular

samples from clinical biopsies. For example, when studying

lymphocyte activation in clinical samples (Hritzo et al., 2018),

quantitative information on protein localization is highly desir-

able. In this respect, the presented IFC platform is capable of

efficiently loading small (microliter-sized) sample volumes con-

taining only a few hundred cells.

More generally, we note that the present imaging cytometry

platform integrated with artificial intelligence-aided image pro-

cessing would allow multiparametric quantification of cell popu-

lations with unrivaled throughput and resolution and facilitate the

identification of cell characteristics relevant for sample classifi-

cation in a range of molecular diagnostic strategies, such as

morphology-based diagnosis of rare cells in blood diseases

(Brereton et al., 2015; Bigorra et al., 2019) or circulating tumor

cells (Ogle et al., 2016). In addition, our platform is ideally suited

for the classification ofmembrane-less organelles on the basis of

their localization and composition inside cells. Such a capability

is critical, for example, in the detection of protein aggregation

associated with a range of neurodegenerative diseases (Wolozin

and Ivanov, 2019; Fan and Leung, 2016). Moreover, the platform

could be integrated with refractive microlens arrays, with a view

to significantly enhancing analytical throughput in wide-field im-

aging applications (Holzner et al., 2018). In this regard, an

obvious application would be in CRISPR-based genetic

screening for the identification of protein candidates that affect

stress granule assembly (Wheeler et al., 2020).

Herein we have also addressed the co-localization of two fluo-

rescently labeled proteins in live cells using two independent

methods. In the first one, we analyzed the percentage of granules

occupying the same spot in both mNG and mRuby2 channels

(Figure S6). This involves initially determining the position of

high-intensity ‘‘spots’’ in cells and then testing whether spot loca-

tions from both channels overlap. This approach is useful when

analyzing sub-cellular structures such as RNA granules. In a sec-

ond approach, we calculated the correlation factor (R) of pixel in-

tensities between both channels to estimate co-localization at the
10 Cell Reports 34, 108824, March 9, 2021
whole-cell level (Figure 5). This approach tests whether the overall

sub-cellular distribution of two proteins overlaps, suggesting a

functional interaction or association within similar organelles. In

these analyses, we used ANOVA to test whether there was a sta-

tistically significant change in the R value distribution from each

cell across each co-expression condition. Because of the high-

statistical power of such an analysis on thousands of cells, we

demonstrate statistically significant differences for each pairwise

comparison, thereby establishing the power of our high-

throughput IFC approach. However, one needs to apply a

different strategy for hit discovery during a screen (e.g., impact

of a drug collection on Protein X and Y co-localization, protein

interaction screening). Using a ‘‘spot’’ co-localization percentage

(method 1), or correlation coefficient (method 2), one could estab-

lish a threshold for positive hits on the basis of positive control ex-

periments using conditions (e.g., drug interactions) known to have

positive impact on the co-localization events. Adequate negative

controls are also needed to establish a baseline for background

interaction. For example, Figures 5D and 5F clearly show that

themeancorrelation factor is above 0.5 only for the two conditions

that are supposed to be positive for co-localization. Alternatively,

one could perform a statistical test among biological replicates to

identify a statistically significant change in the ‘‘spot’’ co-localiza-

tion percentage (method 1) or correlation coefficient (method 2)

compared with a reference condition (e.g., mock-treated cells

versus drug-treated cells). Finally, one could apply a supervised

or unsupervised machine learning image algorithm to classify

the testing conditions. This last possibility is facilitated by the large

samples engendered by high-throughput IFC and represents an

exciting discovery approach.

Despite the efficacy of the present platform for high-

throughput cellular imaging, the addition of a high-power light

source (modulated at higher frequencies) and a high-quantum

efficiency camera would enable blur-free imaging at even higher

throughputs and with enhanced sensitivity. Despite these pro-

posed improvements, our studies demonstrate the sensitivity

of our cytometry platform for imaging cells at ultra-high

throughput and screening large and heterogeneous cellular pop-

ulations. To conclude, we have presented amicrofluidic platform

for high-resolution, high-throughput IFC, which incorporates a

viscoelastic carrier fluid and stroboscopic laser light sheet illumi-

nation. Critically, the adoption of a wide-channel microfluidic

format facilitates simple fluidic operation and greatly simplifies

the optical detection scheme. As shown, such advances provide

for an increase in analytical throughput of several orders of

magnitude compared with existing imaging flow cytometers.

Finally, it should also be noted that as contemporary cameras

and computational tools become both faster and cheaper, the

combination of our approach with ‘‘real-time’’ image analysis

will have significant implications in a range of diagnostic

applications.
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pcDNA5/FRT/TO Thermo Scientific Cat#V652020

pcDNA5/FRT/TO-mRuby2 B. Mateescu (University Zurich) N/A
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scientific-software/prism/

AutoCAD Autodesk https://www.autodesk.com/products/
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Other
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Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Andrew deMello

(andrew.demello@chem.ethz.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code supporting the current study has not been deposited in a public repository but is available from the corresponding author on

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture, transfection and fixation
Experiments were performed on four different cell lines: JURKAT Clone E6-1 (LGC Standards GmbH,Wesel, Germany USA), Human

B-lymphoid, 293T Flp-in T-REX (Life Technologies, Zug, Switzerland) and yeast. Jurkat andHumanB-lymphoid cell lines were initially

tested for mycoplasma contamination and then cultured in RPMI-1640 medium (Life Technologies, Zug, Switzerland) supplemented

with 10% (v/v) FBS (Life Technologies, Zug Switzerland) and 1% (v/v) Penicillin-Streptomycin (10,000 U/mL, Life Technologies, Zug

Switzerland) in a CO2 incubator (New Brunswick Galaxy� 170 S, Eppendorf, Schönenbuch Switzerland) at 37�C, 5%CO2, according

to standard protocols. All experiments were performed on cells in the exponential (log) phase of growth. Cells were fixed in 4% para-

formaldehyde for 10 minutes at room temperature, rinsed 3 times in HBSS buffer and incubated with Alexa Fluor 488 WGA (1:200,

A12379, Life Technologies, Zug, Switzerland) for 10 minutes at room temperature. After rinsing twice with HBSS, cells were trans-

ferred in PBS and mixed with OptiPrep� Density Gradient Medium (Sigma-Aldrich, Buchs, Switzerland) and the PEO solution to the

desired ratio and used directly.

293T Flp-in T-REX cells expressing mNG or mNG-AGO2 cells were cultured in DMEM medium (Life Technologies, Zug,

Switzerland), supplemented with Glutamax and HEPES (Life Technologies, Zug, Switzerland), and 10% fetal bovine serum (FBS,

Life Technologies, Zug, Switzerland). It should be noted that our mNG tags also have a 3xFlag and SBP affinity peptide sequence

at the N-terminal. Two days before analysis, 8 million cells were seeded in a 10 cm plate in the presence of doxycycline (2 mg/ml)

to induce expression of the tagged protein. Transfection of the plasmid was performed using PEImax (Polysciences Europe

GmbH, Hirschberg an der Bergstrasse, Germany), by mixing 180 ml of PEImax (1 mg/ml) with 9 mg of plasmid 24 hours after seeding,

and replacing the medium after 8 hours. Then, 48 hours after plating, cells were treated with sodium arsenite (Sigma-Aldrich, Buchs

Switzerland) for 2 hours. The mediumwas subsequently replaced with PBS buffer before 8-10 representative images (green, red and

phase contrast) for each condition were acquired on a Floid fluorescence microscope (Life Technologies, Zug, Switzerland). After-

ward, adherent cells were trypsinized, and the corresponding cell suspension washed once in PBS, before fixation in 2% parafor-

maldehyde for 10 minutes. Finally, the cell suspension was washed twice with PBS before re-suspending in DMEM supplemented

with 10% FBS, and then washed with PBS.

Yeastmediaandgrowthconditionsof cellswere asdescribedpreviously (Saadetal., 2017).Briefly, saturatedovernight cultureswere

diluted into fresh synthetic completemedia containing 2%glucose for 5 hours (mid-exponential phase), or for an additional 48 hours to

ensure entry into the stationary phase (starvation). Cellswere fixed using a 3.7% formaldehyde solution and incubated at room temper-

ature for 10 minutes. Cells were washed twice in PBS by centrifugation and then imaged. The yeast strain used in the current experi-

ments was ySS12 (Saad et al., 2017) (genotype: BY4741, CDC19::CDC19-GFP-HIS3, Life Technologies, Zug, Switzerland).

METHOD DETAILS

Microfluidic device fabrication
Microfluidic devices were fabricated using standard soft-lithographic techniques. Briefly, the two-dimensional channel pattern

was designed using AutoCAD (AutoCAD 2017, Autodesk, San Rafael CA, USA) and printed onto a transparent film photomask (Mi-

cro Lithography Services Ltd, Chelmsford, United Kingdom). The photomask was subsequently used to pattern an SU-8-coated

silicon wafer (Microchem Corporation, Westborough, USA) using conventional photolithography. A 10:1 mixture of polydimethox-

ysilane (PDMS) monomer and curing agent (Sylgard 184, Dow Corning, Midland, USA) was poured over the master-mold and

peeled off after polymerization at 70�C for 4 hours. Inlet and outlet ports were created using a hole-puncher (Technical Innovations,

West Palm Beach, USA) and the structured PDMS substrate then bonded to a planar glass substrate (Menzel-Glaser, Braunsch-

weig, Germany) after exposing both surfaces to an oxygen plasma (EMITECHK1000X, Quorum Technologies, East Sussex, United

Kingdom) for 60 s.
e2 Cell Reports 34, 108824, March 9, 2021
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Microfluidic device structure
A schematic of the microfluidic device, comprising a single high aspect ratio channel, is shown in Figure 1B. Channel cross-sections

were 593 665 mm (for experiments using a 20X objective), 593 1331 mm (for experiments using a 10X objective) and 383 332 mm for

experiments using yeast cells. These dimensions guaranteed an even distribution of cells across the channel, as shown in Figure S1.

The height of themicrofluidic channel was set to 59 mm, so as to satisfy the blockage ratio criterion, b = a/h, (where a and h are the cell

diameter and the characteristic height of the microchannel) to be smaller than 0.25. The average diameter of the mammalian cells

used in this study was 13 mm and the average diameter of yeast cells is approximately 4 mm. Such conditions yielded single file/in

plane focusing of cells according to previous studies (Holzner et al., 2017). Computational fluid dynamics simulations of the flow dis-

tribution across the microfluidic chip were performed in COMSOL Multiphysics 5.4,

Device operation
PDMS devices were initially rinsed in water and then incubated for 10 minutes in a 2%w/w Pluronic� F-127 (Sigma-Aldrich, Buchs,

Switzerland) solution to prevent cells sticking to the channel walls. The cell suspension (at concentrations up to 25 million cells per

mL) was loaded into a 1 mL syringe (Hamilton Laboratory Products, NV, USA) and delivered at the desired flow rate using a precision

syringe pump (neMESYS, Cetoni, Korbussen, Germany). The microfluidic device was placed on a motorized xy translation stage

(Mad City Laboratories, Maddison, USA) mounted on an inverted Ti-E microscope (Nikon, Zurich, Switzerland). In all experiments,

cells and beads were suspended in a viscoelastic polyethylene oxide solution (PEO) solution to allow for elasto inertial focusing. Mul-

tiple parameters must be controlled to ensure efficient focusing cells into a single file. These include themolecular weight of the poly-

mer, concentration of the polymer solution, microfluidic channel geometry, the blockage ratio and flow rate of the suspension. A

detailed description of the specific influence of each of these parameters can be found elsewhere (Holzner et al., 2017). Current ex-

periments were carried out in a 500 ppm/1 MDa PEO and 1,000 ppm/1 MDa PEO (Sigma-Aldrich, Buchs, Switzerland) solutions for

cells and yeast/beads, respectively. A stock solution at a concentration of 10,000 ppm was prepared and aged at room temperature

for a month, to ensure stability (Holzner et al., 2017). The stock solution was diluted with DPBS (Life Technologies, Zug, Switzerland)

to the desired concentration and used immediately or stored at 4�C.
The cell suspension was loaded into a 1 mL syringe (Gastight Syringes, Hamilton Laboratory Products, NV, USA) and delivered at

flow rates of up to 240 mL/minute using a precision syringe pump (neMESYS, Cetoni, Korbussen, Germany). Settling of cells within

syringes was minimized by matching the density of the medium to the cell suspension using a 36% v/v Optiprep Density Gradient

Medium. A commercial calibration kit (Quantum Alexa Fluor 488 MESF, Bangs Laboratories, Indiana, USA) consisting of five micro-

sphere populations (surface) labeled with increasing amounts of a specified fluorochrome, was used for intensity calibration mea-

surements (Figures S4A and S4B). The volumetric flow rate of the cell suspension was adjusted, to ensure oversampling of cells

during the imaging process and thus yield blur-free images according to relations presented in Figure S2A. Since the ROI is slightly

larger than the diameter of the cell, oversampling allows us to image the same cell twice, ensuring the precise measurement of both

size and content. This is achieved by synchronizing the cell velocity with the camera acquisition rate. The image acquisition rate was

set to between 2,000 and 4,888 frames/s, depending on themagnification of the objective and the corresponding size of the region of

interest. Accordingly, each cell traverses the microfluidic channel in a time period less than 500 ms and thus will be imagedmore than

once during the acquisition process. Using such criteria, cells should move at a linear flow velocity of between 0.03-0.05 m/s, de-

pending on the magnification. Crucially, the number of cells detected in each frame is maximized by working at cell concentrations

high enough to ensure compact packing (Holzner et al., 2017).

Optical setup & data acquisition
The optical system (Figure 1A) consists of an inverted microscope (Eclipse Ti-E, Nikon, Zurich, Switzerland) equipped with a motor-

ized stage (Mad City Labs, Maddison, USA) and a Dual-View detection system (Cairn Research, Faversham, Kent, UK). The outputs

of a green (561 nm, Coherent Genesis MX, Glasgow, UK) and blue (488 nm, Coherent Genesis MX, Glasgow, UK) laser were com-

bined using a set of mirrors. After transmission through an acousto-optical tunable filter (AOTF nC-400-650-TN, AA Opto-electronic,

Orsay, France) connected to a RF driver (AA Opto-electronic, Orsay, France), the combined beam was focused to a line with a width

approximately equal to the average cell diameter (~15 mm) using a cylindrical lens (LJ1558RM-A, Thorlabs, L€ubeck Germany). Yeast

experiments required the use of an acylindrical lens (AYL2520-A, Thorlabs, L€ubeck Germany) to generate a line width of 5 mm.

A variety of objective lenses, including a 10x (Plan Fluor 10x, NA 0.5, Nikon, Zurich, Switzerland), a 20x (Plan Apo 20x, NA 0.50,

Nikon, Zurich, Switzerland) and a 40x (Plan Fluor 40x, NA 0.75, Nikon, Zurich, Switzerland) were used. Additionally, an extra lens

that provided 1.5x magnification at the output port of the microscope was also used on occasion. Fluorescence originating from in-

dividual cells was collected by the objective lens and passed through the Dual-View optical configuration to obtain dual color images.

Simultaneous bright-field and fluorescence imaging was accomplished using a red LED light source (Spectra X, Lumencor, Beaver-

ton, USA) in combination with the blue laser at 488 nm, as depicted in Figure S4H.

The Dual-View optical configuration wasmounted between the tube lens of themicroscope and a CMOS camera (ORCA-flash 4.0,

Hamamatsu, Solothurn, Switzerland or Prime 95BScientific CMOSCamera, Roper Scientific, Planegg, Germany) and comprised two

mirrors, a dichroic mirror and two emission filters. For dual color experiments, a dichroic mirror (HC BS 560, AHF, Tubingen, Ger-

many) was used to split the emission light into two colors. Two emission filters 520/35 (F37-520, AHF, Tubingen, Germany) and

590 LP ET Longpass (F47-591, AHF, Tubingen, Germany) were used to detect mNeonGreen andmRuby2 fluorescence, respectively.
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The two fluorophores were imaged simultaneously in different regions of theCMOS camera and commercial software (MicroManager

1.4.15, University of California, San Francisco, USA) used to record the images. For bright-field experiments, the longer wavelength

channel was used without an emission filter. Synchronization of both the laser and the LED light source with the camera was accom-

plished using two ESIO AOTF controllers (ESImaging, Kent, UK). The AOTF and the LED were triggered by the CMOS camera with a

TTL pulse (matched to the exposure time of the camera) to achieve synchronization between the laser (SPECTRA X light engine, Lu-

mencor, USA) and the camera. The sampling frame rate of the ORCA-flash 4.0 CMOS camera was up to 4,888frames/s, and the

AOTF driver generated a pulse length that varied between 13 and 20 ms (depending on the flow rates used) for both laser lines.

The laser beam was modified into a slit-shaped profile, oriented orthogonally to the flow direction, through the use of a cylindrical

lens. Using this excitation profile, only a narrow field needs to be illuminated. This contrasts with traditional epi-illumination excitation

formats, in which the entire field of view is illuminated. The light density provided by the cylindrical lens increases the effective illu-

mination intensity by one order of magnitude when compared to normal epi-illumination modalities.

Static images from relief phase and green channels (ex: 482/18 nm, em: 532/59 nm) from adherent 293T cells expressing different

fluorescent proteins were acquired using a Floid Cell imaging station (Life Technologies, Zug, Switzerland) and saved as TIFF files.

Optimization of the illumination pulse duration and flow velocity for blur-free imaging
High-speed imaging in flow aims to extract precise information about cell size andmorphology. It is therefore important to image with

the highest temporal and spatial resolution. The flow rate determines the cell velocity in the microfluidic channel; however, if the ob-

ject of interest is moving rapidly, the image may be susceptible to motion-blur. This undesired effect causes a smeared appearance

of the imaged object. Minimizing motion-blur is needed to accurately capture a high-resolution image of a moving object and can be

achieved by adjusting the temporal resolution of the imaging system, through control of the illumination pulsewidth or the flow rate. In

the current configuration, the 500 ms exposure time refers to the camera exposure, while the laser strobing time (or pulse length)

varies between 13 and 20 ms and defines the ‘‘effective exposure.

The relationship between the illumination pulse duration, flow velocity andmotion blur is depicted in Figure S2B. The motion blur is

given by the distance that a cell travels during the illumination duration. As expected, motion blur increases (at a given flow velocity)

with the illumination pulse duration. If D is the displacement (in microns) of a cell moving with a velocity v during time t (the shutter

speed), the motion blur is given as D= t x v. This relationship can be used to define the ideal experimental parameters. Figure S2B

presents the relationship between shutter time and cell velocity at fixed values of motion blur. A high cellular velocity means that a

large number of cells move through the system and must be imaged using an exposure time that eliminates motion blur, while col-

lecting as many fluorescence photons as possible. The ‘‘motion blur’’ lines shown in Figure S2B define a parameter space for a given

experiment. In the current experiments, we aimed for a motion blur less than 0.5 mm; a value smaller than the diffraction limit of the

20X 0.50NA (0.55 mm) objective used in image colocalization studies. Indeed, no motion blur is evident in the acquired images and

thus we are able to accurately quantify the size and the localization of spots

Sensitivity of the microfluidic imaging flow cytometer
We evaluated the sensitivity and detection range of our imaging flow cytometer using suspensions of fluorescent particles, charac-

terized by four distinct fluorescence intensities. Based on the analysis of such calibration samples we are able to quantify our sensi-

tivity, which is depicted in the calibration curve show in Figure S4B. Absolute quantification of the fluorescence intensity in MESF

(molecules of equivalent soluble fluorophore FITC) units was provided by the manufacturer (Quantum Alexa Fluor 488 MESF, Bangs

Laboratories, Indiana, USA). Fluorescence intensities ranged between 3,179 and 333,766 MESF units. The smallest intensity peak in

our calibration curve (population 1, green histogram: Figure S4C) has an intensity of 3,179 MESF units. This intensity lies below the

calculated limit of detection (LOD) (Armbruster and Pry, 2008)) of the imaging cytometer, which corresponds to 8,481 MESF. Inter-

estingly, we were still able to detect beads with an intensity of 3,179 MESF units by bandpass filtering the images and integrating

pixels with an intensity above the background. It is also noteworthy that most applications in flow cytometry typically exhibit values

above 30,000 MESF (Wang et al., 2002).

Tradeoff between detection sensitivity and throughput
To provide a better assessment of the capabilities of the imaging flow cytometer, it is important to account for the trade-off between

throughput and detection sensitivity using 15xmagnification optics. In this regard it is important to realize that when acquiring images

of rapidly moving objects, motion blur and noise are strictly controlled by the exposure time. The trade-off between long exposure

times (that reduce the noise but increase motion blur) and short exposure times (that reduce motion blur at the cost of increasing

noise and reducing the number of collected photons) is unavoidable. According to Mikami et al. the signal-to-noise ratio associated

with a fluorescence image can be calculated using the signal-to-noise ratio of the camera readout per pixel (Mikami et al., 2020). The

fluorescence signal (FS) expressed as the number of electrons is given by;

FS=P S�1t N A 4 nIFC qS =P S�1DxV
�1N A 4 nIFC qS

Here, P is the power of the excitation beam, S the cross section of the excitation beam, t the time amolecule spends in the excitation

beam, N the number of fluorescent molecules in a single-pixel area, A the absorption cross section of the fluorescent molecule, 4 the
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fluorescence quantum yield of themolecule, nIFCthe photon collection efficiency of the imaging platform, qS the quantum efficiency of

the camera sensor,Dxthe distance traveled by the fluorescent molecule and V velocity of the fluorescent molecule. The experimental

values of these parameters can be found in Table S1.

The Signal-to-Noise Ratio (SNR) is defined according to the following equation:

SNR =
FS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FS+s2
p

where s is the readout noise of the image sensor. It is important to note that the SNR strongly depends on the number of fluorescence

molecules within the object being imaged. The estimated fluorescence SNR is inversely proportional to the velocity/throughput of the

fluorescent molecules as shown in Figure S4E (assuming 300 molecules per pixel). The increasing imaging speed comes at the

expense of sensitivity, since a shorter exposure is used to obtain images. The sensitivity of the presented platform will deteriorate

significantly for velocities above 0.1 m/s (i.e., a throughput of ~40,000 cells/s) due to the limited illumination time (5 ms) needed to

produce blur free images. In the case of fluorescence imaging, the intrinsic weakness of the fluorescence signals is the primarily lim-

itation. When acquiring images of rapidly moving objects, the exposure time must be precisely controlled, since this controls the

amount of blur and noise in an observation. In the current scenario, the combination of a powerful light source modulated at high

frequency and a high fluorescence quantum efficiency allows for blur-free imaging with excellent sensitivity. Optimal conditions

for our system are achieved at velocities of 0.05 m/s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing and data analysis of imaging flow cytometry images
Post-processing of data is performed using algorithms that analyze fluorescence and bright-field images to extract the size, location

and the intensity of cells and intracellular features. The image processing algorithm was implemented in Python 2.7 and OpenCV 2.4.

The images acquired (and stored as a TIFF stack) were analyzed for various cellular attributes, including cell area, cell size, cell posi-

tion, spot number, spot size, spot location, and fluorescence intensity. Data obtained from the processing algorithmwere then plotted

as scatterplots and histograms. Initially, the image is read from the TIFF stack and a ‘‘de-noising’’ algorithm is implemented in Python

to perform intensity-based filtering of noise from the image (Crocker andGrier, 1996). This step is important as it reduces background

noise andmakes subsequent binary thresholdingmore reliable. An inbuilt OpenCV function ‘findContours’ is then used to identify cell

and spot borders, with each of the cell and spot images being stored as a closed contour. This closed contour provides cell and spot

morphology parameters such as cell area, cell size and centroid coordinates. Using the cell border information, the raw image is

analyzed for fluorescence. The built-in function ‘pointPolygonTest’ allows assignment of spots to cell contours. The code searches

for the maximum fluorescence intensity inside the defined cell area and also computes the mean fluorescence intensity of the cell.

The analysis of all images in a stack, gives a data matrix containing information on the size, area, cell centroid and fluorescence

intensity of the cell. These raw data are then filtered to remove artifacts due to image noise and cell debris. The filtered data are then

presented in the form of scatterplots and histograms. The CVs (coefficients of variation) were defined as the ratio of the standard

deviation to the mean for a measured population.

For multi-parametric detection, it is essential to correlate co-localized events (for example, mRuby2-AGO2 and mNG-AGO2). This

is achieved using the information derived from the coordinates of the centroid of the detected event. First data obtained fromdifferent

detection channels are corrected for offsets in the position of detected event in the image. Subsequently, images from both channels

are analyzed for cell or spot attributes. Detected events are then correlated by comparing the coordinates of the detected events in

both channels. Once the events are correlated, plots of the chosen attributes can be generated.

Image processing and data analysis of static images
For each acquisition, processing masks were defined to segment each individual cell, and then corresponding images were ex-

tracted as a TIFF stack. The number of granules per cell were manually quantified by a human operator using more than 1000 cells

per experimental conditions.

Flow cytometry and analysis
A commercial flow cytometer (Astrios MoFlo, San Jose, USA) was used for measuring the coefficient of variation (CV) of fluorescence

intensity of Jurkat cells. Data were analyzed using R (www.r-project.org). A plot of forward scatter against side scatter was first used

to gate cellular events and eliminate events caused by cell debris. A plot of peak area against peak height for the given detection

channel was used to gate single cells. Finally, fluorescence intensity histograms were created for the cell population. The number

of gated events corresponds to 20,000 cells for statistical robustness in data analysis.

ANOVA statistical analysis
To test for significant differences in the correlation coefficient between two different samples, one-way ANOVA analysis was per-

formed using Prism 8 (Graphpad, San Diego) using multiple comparison test and Tukey correction using statistical hypothesis

testing.
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