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ABSTRACT: We report the application of metamodeling algorithms
based on Universal Kriging for the controlled synthesis of compound
semiconductor nanoparticles. Application of such a metamodel allows
the prediction of reaction outcomes at arbitrary points within sparsely
sampled parameter spaces as a function of reaction conditions. To
demonstrate the applicability of Universal Kriging to chemical reaction
screening within microfluidic reaction systems CdSe and CdSeTe
quantum dots were synthesized by using a segmented flow capillary
reactor. Variation of input reagent flows (to control reagent
concentrations and reaction residence times) and online spectroscopic
monitoring of product characteristics was achieved in a fully automated
manner. The resulting fluorescence spectra are analyzed to extract the
fwhm, wavelength maximum, and intensity of the band-edge emission.
These values are subsequently used as inputs for the Universal Kriging metamodeling algorithm to predict the reactor output at
arbitrary points within accessible parameter space. Results demonstrate that the algorithm can predict reaction outcomes with
high accuracy and reliability.

■ INTRODUCTION

Nanomaterials possess electronic and optical characteristics that
typically differ greatly from the bulk materials from which they
are derived.1,2 This fact opens up opportunities for their use in
a wide range of applications such as catalysis,3 energy storage
and generation,4 photonics,5 biosensing,6 and medicine.7 In
particular, quantum dots, nanometer-sized semiconductor
materials small enough to experience quantum confinement
effects, possess band gaps that are a direct function of crystallite
size thus allowing the production of particles with tunable
emission over a wide range of energies.8 The ability to precisely
tune this band gap (and thus emission wavelength) requires
strict control of reaction conditions such as temperature,
precursor ratios, and reaction time during particle synthesis.9 In
recent years microfluidic reactors have been shown to provide
for such control and are increasingly used to synthesize
nanomaterials of defined chemical and physical properties.10,11

To date microfluidic methods have been used to synthesize a
range of nanomaterials including CdSe, CdS, InP, Ag, Au, Co,
TiO2, SiO2, LaPO4, CaCO3, FexOy, zeolites, and BaSO4, as well
as more complicated core/shell structures such as CdSe/ZnS,
Fe2O3/SiO2, SiO2/Au, Au/Ag/Au, and CdSe/ZnSe/ZnS.12

In simple terms, operation within microfluidic environments
affords significant advantage in terms of heat and mass transfer,
parameter control, and the ability to integrate real-time
monitoring of the reaction products.13 In contrast, flask-based
synthetic methods14 require extensive experimental effort to
develop protocols that reproducibly lead to the production of

high-quality quantum dot populations of defined size and size
distribution. Indeed, it is well-recognized that the on-demand
production of bespoke nanoparticles of arbitrary size remains a
significant industrial challenge, with most quantum dots only
commercially available in a small range of defined sizes.15

In theory, the adoption of microfluidic approaches alleviates
this problem as hundreds of experiments can be carried out
within hours by using minute amounts of reagent to find the
precise experimental conditions that yield particle populations
of the desired average size, size distribution, and fluorescence
quantum efficiency.10 Nevertheless, it is still undesirable to scan
the entire set of conditions within accessible parameter space to
ensure that reagent and time consumption are kept to a
minimum, especially in complex multiparameter reaction
systems. Accordingly, there is a defined need for the utilization
of metamodeling techniques that are computationally fast, show
high accuracy in their prediction of product parameters, and are
easy to implement. To date a number of studies have reported
the use of optimization routines to guide and accelerate the
identification of optimal reaction conditions for the synthesis of
predefined nanomaterials. Examples include artificial neural
networks in the combinatorial synthesis of CdSe16 and the use
of noise-tolerant global search algorithms to find optimal
conditions for the synthesis of CdSe quantum dots with
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predefined properties.10 Despite their utility, the above-
mentioned methods are either computationally intensive,16

not model based (and thus do not allow accurate prediction of
points between the samples),17 or optimize an objective
function, thereby obscuring the actual physical parameters of
the products and potentially penalizing desirable products
heavily due to arbitrarily chosen weighting coefficients.10

Accordingly, there have been surprisingly few reports of using
microfluidic reactors to make nanomaterials of predefined
characteristics.11,18 To directly address this issue we describe
herein an automated microfluidic reaction system incorporating
a metamodeling algorithm based on Universal Kriging that
allows the prediction of product characteristics in regions of
parameter space between sampled points. This approach
provides a route to on-demand synthesis of high-quality,
bespoke quantum dots of defined size. We show that the
method outperforms literature methods in its computational
efficiency and outstanding “intuition” in predicting product
parameters even in scarcely sampled reaction systems.
An Automated Microfluidic Reactor for Quantum Dot

Synthesis. Quantum dots (CdSe or CdSeTe) are synthesized
in the microfluidic reactor depicted schematically in Figure 1.
Details regarding this setup are elaborated in the Supporting
Information. The Syringe pumps that deliver reagents to the
reactor and the spectrometer are controlled by using in-house
LabVIEW code. Two or three precursor streams for CdSe or
CdSeTe synthesis, respectively, are united in a microfluidic
mixer at different ratios. This stream is then segmented into
nanoliter-volume droplets by a perfluorinated oil continuous
phase. Segmentation significantly reduces problems19 with
reactor fouling,20 eliminates residence time distributions,21 and
increases mixing efficiency due to a circulating flow profile22

within each droplet. Particle nucleation and growth take place
within a PTFE capillary immersed in an oil bath at a fixed
temperature, with the reaction residence time being controlled
by variation of the total flow rate of all inlet streams. After each
change to a new set of parameters the reactor is left to stabilize
for 2.5 residence times before the emission spectrum of the
product particles is recorded. Reaction products are excited at
405 nm and emission spectra collected and processed with use
of in-house MATLAB code to extract the emission maximum,
full width at half-maximum (fwhm), and intensity of the band
edge emission. A Universal Kriging metamodel is then fitted to
the data to obtain an estimation for the entire parameter space.
Universal Kriging and Model Evaluation. Kriging is a

statistical interpolation technique conceived by Daniel Krige to

estimate the distribution of gold ores in samples obtained at
bore holes at the Witwatersrand reef complex in South Africa
and further developed by Georges Matheron.23 It is a distance
weighted interpolation method, meaning that samples closer to
the point to be predicted have more influence on the prediction
than those further away. Weighting coefficients are chosen in a
way that ensures that the variance of the estimation is minimal.
Excellent introductions to the Theory of Kriging can be found
elsewhere.24,25 Accordingly only a short introduction to the
method will be given here. Data are presumed to originate from
a Gaussian stochastic process {Z(s): s ∈ D}, where D is a fixed
subset of a d-dimensional space from which samples are
collected and used to perform inference on the process. This
process is assumed to be intrinsically stationary, thus fulfilling

+ − =E Z s h Z s( ( ) ( )) 0 (1)

γ+ − =Z s h Z s hVar( ( ) ( )) 2 ( ) (2)

at any point s with 2γ(h) as variogram, which is a function of
only h, an arbitrary distance. This means that the expected
value of a measurement is uniform over the entire parameter
space with the variance between two points a given distance
apart given by the variogram. Some authors prefer to define a
covariogram C(h) = cov(Z(0),Z(h)) instead of the variogram.
However, for a covariogram to exist the process Z(s) must be
covariance stationary (second order stationary), which is a
stricter condition than intrinsic stationarity. Since the class of
second order sationary processes is contained in the class of
intrisic stationary processes, every existing covariogram can be
converted to a variogram via the relation 2γ(h) = C(0) − C(h).
This is why Kriging is defined here via the variogram. The
variogram function is not known a priori but must be estimated
from the data. The classical estimator24 for the variogram is
given by

∑γ ̂ ≡
| |

−h
N h

Z s Z s2 ( )
1
( )

( ( ) ( ))
N h

i j
( )

2

(3)

which is unbiased but not resistant to contamination (e.g., by
systematic measurement error) in the data. Here |N(h)| is the
number of points that lie within a certain binning tolerance
around the exact distance h. Since the value of the variogram is
not known at every distance a model must be fitted to the
empirical variogram. Possible shapes that a variogram can
assume are shown in Figure 2. The process Z(s) can be
separated to yield

Figure 1. Schematic of the setup used for the microfluidic synthesis of quantum dots. The inset shows formed droplets containing CdSeTe quantum
dots after leaving the oil bath.
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μ δ= +Z s s( ) ( ) (4)

where μ is a deterministic component, the mean, and δ(s) is a
zero mean stochastic process fluctuating around μ. The three
basic flavors of Kriging are distinguished through the behavior
of μ. In Simple Kriging the mean is constant and known, in
Ordinary Kriging the mean is constant but unknown, whereas in
Universal Kriging (the method used in this work) the mean is
unknown and a function of the spatial coordinates. In the case
of Universal Kriging eq 4 can be rewritten as

∑ β δ= +
=

Z s f s s( ) ( ) ( )
j

p

j j
1 (5)

The functions f j(s) define shape functions used to model the
deterministic component and must be known. They can be
obtained via linear regression and variance analysis or simply by
exploratory data analysis.25 Methods to estimate the validity of
the chosen shape functions are discussed below. The
coefficients βj are calculated and therefore not needed a priori.
For p = 1 and f1 = 1 Ordinary Kriging is recovered. Now the
linear, unbiased Universal Kriging estimator

∑ λ̂ =
=

Z s Z s( ) ( )
i

N

i i0
1 (6)

for the point s0 given N observations at the points s1...sN can be
obtained by minimizing its mean square prediction error under
the constraint

∑ λ =
=

1
i

N

i
1 (7)

using the method of Lagrange multipliers.26 The obtained
system of linear equations must then be solved for every point
to be estimated. The variance of the prediction (Kriging
variance) is obtained from

∑ ∑ ∑σ λ γ λ λ γ= − − −
= = =

s s s s s( ) 2 ( ) ( )
i

n

i i
i

n

j

n

i j i j
2

0
1

0
1 1 (8)

and can later be used to access the validity of the model as
explained further below.
For Kriging, as well as for other metamodeling techniques,

appropriate sampling is of high importance. Sampling schemes
designed for low-order polynomial models typically used in
traditional design of experiments (DOE) such as full- or
fractional-factorial designs are not suitable. Instead, space-filling
designs are required. A popular method is Latin hypercube
sampling (LHS) originally invented for computer simulations.27

To construct a Latin hyper cube sampling scheme for N
samples the parameter space is divided equally into N rows and
N columns. The resulting cells are now sampled randomly but
such that each row and column contains exactly one sample.
This scheme can be extended accordingly to arbitrary
dimensions. It is possible (but unlikely) that by chance most
of the measurements lie on the main diagonal and are thus
unsuitable for metamodel fitting due to the high correlation of
the measurements. Different criteria have been suggested to
optimize the properties of the LHS design. These include
maximizing the minimum euclidean distance between measure-
ments, minimizing the maximum euclidean distance between
measurements or optimizing the orthogonality of the sampling
points, thus reducing correlation; the latter being the criterion
used in the present work.28−30

Kriging typically shows high accuracy in predicting even
sparsely sampled parameter spaces.31 In Figure 3 the perform-

ance of Ordinary Kriging with respect to the Branin test
function (commonly used in optimization problems) is shown.
Ordinary Kriging is appropriate in this situation (as opposed to
Universal Kriging) since no trend in the original function can
be identified. After only 80 sampled points chosen randomly in
the fashion of a Latin square design, the true shape of the
parent function is accurately reproduced by the metamodel.
The estimated vs actual plot for 300 randomly chosen points
throughout parameter space indicates high accuracy that is
independent of the function value both in the middle and close
to the borders of the sampled space.
A first impression of the quality of the fitted model can be

obtained via visually inspecting the residuals.25 Ideally there
should be no visible patterns or trends and the residuals should
be normally distributed around zero. Once the model has been
deemed adequate via visual analysis of the randomness of the
residuals more sophisticated methods can be used to confirm
the validity of the chosen form of the shape functions. A
popular method is leave-one-out cross validation.32 Here each
observation in the data set is removed one by one with the
remaining observations then being used to obtain a prediction
at the position si of the removed observation. The residual at
that point is then divided by the Kriging standard deviation
(σSi

2)1/2 calculated by using eq 8 to obtain the standardized
residual ri. There are two different ways of obtaining a
prediction at each point. One is to use the variogram fitted
using all observations including the one to be removed, the
other is to remove the observation and fit a variogram model
for every residual. Usually for larger samples the difference
between the two methods is negligible and the single variogram
method is used for simplicity. The standardized residuals

Figure 2. Examples for typical variogram models.

Figure 3. Branin function (A) shown together with the Ordinary
Kriging estimation (B) after sampling at 80 randomly selected points
indicated as black dots. The actual vs estimated plot (C) compares the
actual function value with the value obtained via Kriging at 300
randomly selected points throughout parameter space.
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obtained via either method are then used to calculate these
statistics:

∑=
=

S
N

r
1

i

N

i1
1 (9)

∑=
=

S
N

r
1

i

N

i2
1

2

(10)

If the model is valid, S1 should be close to zero and S2 close to
one. However, in reality it is very unlikely for them to take
exactly these values since they are actually samples of variables
with a mean of zero and one, respectively. Different methods
have therefore been suggested to obtain better residuals.33

However, the standard method is sufficient for the purpose of
the current work since the validity of the model is assessed
directly via experiment. For the computational example
performed in Figure 3 S1 = 0.04 and S2 = 1.26 are extracted.

■ RESULTS AND DISCUSSION
Performance of the Microfluidic Reactor System. The

quality of the quantum dots synthesized in the reactor is
generally high. Synthesized nanoparticles show narrow band
edge emission peaks with negligible defect emission. Due to the
large body of characterization data available for CdSe and
CdSeTe, not only from batch experiments but also for particles
synthesized in reactors similar to the one presented here,22,34

the emission spectra are deemed appropriate to evaluate the
quality of these materials.
Figure 4 shows the stability of the capillary reactor equipped

with a new capillary over a period of 8 h when synthesizing

CdSe quantum dots at 220 °C with a 120 s residence time.
Over the first 5 h the emission wavelength decreases about 7
nm and then remains approximately constant at 555 nm. Such a
deviation is not large enough to introduce significant systematic
error in the prediction since it is averaged out by virtue of the
fact that samples are taken at random.
In the case of CdSe quantum dots the reactor could be

operated for extended periods of time, as no fouling of the
capillary was observed. Even larger particles synthesized at
prolonged reaction times did not tend to aggregate and
precipitate within the reactor. CdSeTe, however, proved very
different. Larger CdSeTe quantum dots were often observed to
aggregate and precipitate within the droplets, thus creating
some reactor fouling. Accordingly the lifetime of the capillary
was limited and was exchanged periodically, as explained
further below.
Residence time and precursor flow ratio are key parameters

in the synthesis of CdSe nanoparticles in flow.21 In principle,
temperature can also be used as an input parameter but the
high film temperatures occurring during heat up lead to
degradation of the silicon oil and solidification. Therefore, the
temperature was kept constant. The precursor flow ratio is
parametrized by defining

=
+

R
F

F F
100Cd

Cd Se (11)

where FCd and FSe are inlet flow rates of the cadmium and
selenium precursor streams, respectively. The direct ratio (FCd/
FSe) is not appropriate for Kriging since it presents a nonlinear
functional dependence with respect to FSe and a linear
functional dependence with respect to FCd. In the case of
CdSeTe synthesis an additional parameter is defined as

′ =
+

R
F

F F
100Se

Te Se (12)

This accounts for the ratio of selenium to tellurium flow. The
definition of R is altered to yield

=
+ +

R
F

F F F
100Cd

Cd Se Te (13)

This modification reflects the ratio of chalcogenide to cadmium
precursor flow. Figure 5 shows the exemplary level of control
over the reaction parameters that can be achieved by using the
current system. With increasing temperature the particle

Figure 4. Stability of the microfluidic reactor over the course of 8 h
when synthesizing CdSe quantum dots at 220 °C and a 120 s
residence time. Measurements were taken every 10 min. The red line
serves as a guide to the eye.

Figure 5. Effects on the photoluminescence of the synthesized quantum dots when varying T, R (CdSe), or R′ (CdSeTe) with other parameters
being kept constant.
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growth is accelerated, leading to lower energy emission with
higher intensity. The effect of varying R is more complex. The
emission shifts to higher wavelengths as R is varied between 10
and 30 and then back to lower wavelengths as R is further
increased. The intensity of luminescence initially decreases to a
minimum value at R = 30 and then increases for R > 30.
Varying R′ and thus the chalcogenide ratio in the nanocrystals
also leads to a nonlinear variation of the emission spectra,
which agrees with previous bulk experiments.35

Prediction of Product Parameters for the Synthesis of
CdSe. The Kriging metamodeling of the parameter space for
the synthesis of CdSe in the reactor is a two-dimensional
problem since only R, the parameter defining the precursor
ratio, and the residence time t in the reactor are considered.
The temperature is kept constant at 230 °C. To obtain the
model, 80 parameter combinations where collected via a Latin
square design. The residence time t was varied between 30 and
180 s and R between 10 and 90. The molar ratio of the Cd and
Se precursor solutions is Se:Cd = 2:1. After prediction with
Universal Kriging, the validity of the prediction was tested by
sampling 11 points along lines of fixed R or t. The outcome of
this experiment is shown in Figure 6. First it can be observed
that the position of the emission maximum moves to lower
energies with increasing time and decreasing R, thus indicating
the formation of larger quantum dots. The fwhm remains

around 30 nm for R values above 50 and then increases rapidly.
The evaluation confirms the validty of the model with the only
exception being data associated with t = 30 s, which lies on the
border of the evaluated parameter space. Here the fwhm
behaves in an irregular manner and the prediction only gives a
trend estimation. The fluorescence intensity continuously
increases as a function of R, but shows a much smaller
dependence on time. For both emission maximum and
intensity the evaluation experiments show that the accuracy
of the prediction is of excellent quality. In this case the models
show that the ratio of Se:Cd of 2:1 (R = 50) represents a good
compromise between low fwhm and high intensity.

Prediction of Product Parameters for the Synthesis of
CdSeTe. The evaluation of parameter space for the synthesis of
CdSeTe nanoparticles in the reactor provides a more significant
challenge than in the case of CdSe, not only because of the
added dimension when introducing R′, but also because of a
more complicated chemistry involved. TeTOP (TOP:
trioctylphosphine) is more reactive than SeTOP thus making
direct predictions of the composition of product particles from
the precursor ratio difficult. Furthermore, the bandgap is a
nonlinear function of the Se:Te ratio in the final particle. It has
its lowest energy at a Te content of about 60%.36 Due to the
high reactivity of TeTOP the precursor solution was mixed 1:1
with SeTOP precursor thus creating a mixed solution with a

Figure 6. First row shows the obtained metamodels of maximum (A), fwhm (B), and intensity (C) for all parameter combinations within the chosen
boundaries of time and R in the case of CdSe synthesis. Below each model the results of the validation experiment (see text) are shown. The solid
lines represent the predictions with the metamodel whereas the dots correspond to measured values in the validation experiment. The measurements
were taken at fixed R values (D, E ,F) of 20 (red), 50 (green), and 80 (blue) or at fixed reaction residence times (G, H, I) of 30 (red), 100 (green),
and 180 s (blue).
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molar ratio of Se:Te of 1:1. The value of R was always
maintained below 50 since at higher values parallel nucleation
of CdSe is observed. Additional problems arise due to the lower
solubility of the product particles which occasionally led to
precipitation within the droplets. This precipitation causes

some degree of reactor fouling. The time to reactor failure
depends on a variety of parameters, such as Te-content of the
precursor solution, temperature, and reaction time. In a typical
experiment with randomized sampling the reactor would fail
after approximately 120 measurements. Accordingly, including

Figure 7. Metamodels for CdSeTe predicting luminescence maximum (A), fwhm (B), and intensity (C) for t fixed at 75 s. The model was evaluated
by measuring 25 evenly distributed samples at t = 45, 75, and 105 s. The predicted vs actual plots for maximum (D), fwhm (E), and intensity (F)
below the models contain all 75 validation samples.

Figure 8. Metamodels for CdSeTe predicting luminescence maximum (A), fwhm (B), and intensity (C) for R fixed at 33. The model was evaluated
by measuring 36 evenly distributed samples on the R = 33 surface and plotting actual vs predicted.
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a safety margin of about 20 measurements, the capillary was
changed every 100 measurements to avoid blockage.
To represent and evaluate the data, surfaces with t fixed and

variable R and R′ are shown in Figure 7. The luminescence
maximum shifts to lower energies as a function of both R and
R′. The highest intensities and lowest fwhm are obtained when
R′ is approximately 50 whereas R is less influential. To validate
the model, evenly distributed points on surfaces of fixed t were
measured and compared to the prediction. The results for the
luminescence maximum show high accuracy with a slight
systematic error that is attributed to the need to change
capillaries for the evaluation experiments. New capillaries are
not completely stable and induce drifts as shown in Figure 4.
Importantly, this drift does not appreciably affect the prediction
if the measurements are made in a random fashion (e.g., using a
Latin hypercube). In this case, however, the measurements for
prediction and evaluation were taken one after another and
with different capillaries. This introduces a systematic error. For
fwhm measurements, the experimental values are above the
prediction due to the precipitation problems. The trend in
emission intensity is accurately predicted with deviations
increasing as a function of intensity. The precipitation is
dependent on further parameters not considered in the model,
such as the speed of the droplets, the age of the capillary, and
other hidden parameters.
Figure 8 shows the results for R fixed at 33. From the

maximum model it is evident that R′ has a higher influence than
the reaction time. As expected the bandgap energy decreases
with higher tellurium content. The fwhm has its lowest values
around R′ = 50 with the intensity being highest between R′ =
50 and 75. The residence time is much less influential. The
validation experiment with 36 evenly distributed points on the
R = 33 surface demonstrates again much better performance for
the prediction of the fluorescence maximum than for fwhm and
intensity. However, general trends can still be clearly identified.
The systematic error introduced by exchanging capillaries is
present again. The deviation from the predicted values is partly
attributable to the higher complexity of the reaction system but
also on the presence of hidden parameters which will control
the tendency of CdSeTe to aggregate and precipitate.

■ SUMMARY AND CONCLUSION
A stable and reliable reactor for the synthesis of semiconductor
quantum dots (CdSe and CdSeTe) has been developed. The
products exiting the reactor are monitored spectroscopically
online, thus eliminating the need for sample collection.
Recording of photoluminescence spectra and control of the
syringe pumps to set new reaction conditions in terms of
residence time, flow rate, and precursor ratios are fully
automated. The collected spectra are analyzed with MATLAB
to extract the characteristic parameters fwhm, fluorescence
emission maximum and intensity. These values are then used as
inputs for a metamodeling algorithm based on Universal
Kriging. The model predicts the reactor output at arbitrary
points within the chosen parameter space. The accuracy of the
prediction has been demonstrated via the synthesis of colloidal
semiconductor quantum dots with excellent results in the case
of CdSe and good results for the ternary alloy CdSeTe.
The method presented above is fast, reliable, and accurate.

No physical parameters for the reaction are needed as input
thus rendering preliminary experiments redundant. This work
is highly relevant for the field of colloidal quantum dot
synthesis as the amounts needed for commercial applications

are easily accessible via microfluidic methods.34 Combining the
method presented herein with a scaled out reactor will allow
the commercial production of high-quality bespoke quantum
dots with defined emission maximum. From a microfluidics
point of view the approach is also of high value. It has been
argued that the most important output of a microfluidic
experiment is information.37,38 Via Universal Kriging the
information output of the experiment can be maximized
without increasing the number of performed experiments.
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