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ABSTRACT: In recent years, flow photolithography (FL) has emerged as a powerful
synthetic tool for the creation of barcoded microparticles with complex morphologies and
chemical compositions which have been shown to be useful in a range of multiplexed
bioassay applications. More specifically, FL has been highly successful in producing micron-
sized, encoded particles of bespoke shape, size, and color. That said, to date, FL has been
restricted to generating barcoded microparticles and has lacked the ability to produce
hybrid fibers which are structurally and spectrally encoded. To this end, we herein present
a method that combines a continuous flow microfluidic system with two-photon
polymerization (2PP) to fabricate microscale-encoded fibers and Janus strips in a high-
throughput manner. Specifically, two co-flow liquid streams containing a monomer and
initiator are introduced through a Y-shape channel to form a stable interface in the center
of a microfluidic channel. The flow containing the (fluorescently labeled) monomer is then
patterned by scanning the voxel of the 2PP laser across the interface to selectively
polymerize different regions of the forming fiber/particle. Such a process allows for rapid
spectral encoding at the single fiber level, with the resulting structurally coded fibers having obvious application in the fields of
security identification and anticounterfeiting.
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1. INTRODUCTION

Barcodes are an integral part of everyday life and have become
the most popular data entry method to track the ever-exploding
amounts of information. Although barcodes are widely used
around the world in many retail, IT, and healthcare settings, they
have also found great utility in the identification and tracking of
biological entities when performing multiplex assays. Indeed,
many contemporary platforms for gene profiling, small-molecule
screening, and clinical diagnostics incorporate multiplexed
assays.1 In this context, barcoded microparticles have attracted
considerable attention as a tool for assay registration and
identification.2 Encoded nanoparticles and microparticles
represent a novel class of detection and identification tool for
bioanalysis.3 Such particles can be synthesized in a number of
different ways and can be encoded through variations in shape,
composition, morphology, and optical properties.4−9 For
example, microparticles decorated with probe molecules able
to react with a given target can be unambiguously identified
through their barcode.2,10 Additionally, encoded microparticles
can serve as a solid-phase support for a given product, thus
linking the particle code to the identity of the product and its
associated history.11 Accordingly, much interest is currently
focused on improving encoding methods, in regard to its speed,
encoding capabilities, and robustness, with a view to enable a

range of novel multiplexed assay platforms for biological
experimentation.12

In simple terms, the production of encoded microparticles
relies on creating particles with defined shape,6 size,13 and
color.12 Many encoding strategies have been developed to
generate such barcoded particles at high throughput.14−17

Existing encoding methods generally fall into one of two
categories, namely, spatial encoding or optical encoding.3,18

Spatial encoding schemes create graphical patterns or barcodes
in the particle material in a variety of ways.8,19 Although useful,
spatial methods are compromised by their complexity, cost,
inability to generate large encoded populations, and inefficient
readout methods. Conversely, optical encoding methods
produce spectral features that can be identified in a non-invasive
and non-destructive manner, thereby exploiting the advanta-
geous capability of optical multiplexing.12,20−24 Spectral
encoding schemes typically incorporate mixtures of photo-
luminescent materials such as lanthanides,25,26 quantum dots
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(QDs),27−31 and fluorescent dyes32 that emit radiation at
different wavelengths and thus generate uniquely identifiable
signatures. Such schemes allow identification of codes in any
orientation and are compatible with conventional bead synthetic
procedures and standard detection systems. Despite the obvious
promise of spectral encoding schemes, intrinsic technical
challenges have limited their practical application. First, organic
fluorophores have broad emission bandwidths, reduced Stokes
shifts, and poor photostabilities,33,34 making it difficult to
unambiguously decode emission contributions from multiple
fluorophores because of their spectral overlap. QDs provide for
narrow and tunable excitation and emission spectra and have
therefore been the subject of considerable recent interest for
encoding schemes.28 That said, despite their optical advantages,
their high costs significantly limit accessible coding capacities.35

As a result, the largest experimentally produced spectral code
sets from organic dyes or QDs have fallen well short of
theoretical expectations.36 In addition, most spectral encoding
applications have been limited to biological multiplexing studies
and lack the robustness and reusability features required for
industry barcoding, such as in blockchain technology.
In general, the generation of large populations of encoded

particles is limited by the technical difficulties associated with
producing more than a few hundred unique codes.37 In simple
terms, the number of distinct barcode particles that can be
produced by a given method is limited by intrinsic defects in the
encoding strategies and the lack of effective synthetic methods
that operate on short timescales. In recent years, microfluidic
technologies have created new and exciting opportunities to
prepare microparticles of variable morphology and composi-
tion.38−42 When combined with continuous-flow microfluidics,
high-throughput flow-lithography approaches pioneered by
Doyle and colleagues can be used for fabricating encoded
microstructures.19 Although powerful, stop-flow lithography
(SFL) is limited in throughput by the need to stop the flow of a
liquid prepolymer in the channel prior to each curing step.43

Improvements in throughput have been realized through the
demonstration of continuous-flow lithography (CFL), where
lithographic curing occurs as the liquid prepolymer flows.44−47

However, most flow-lithography approaches produce geo-
metries that are limited in resolution and shape (i.e., only 2D
patterns can be extruded) and require the use of an oxygen
inhibition layer. Accordingly, new processing technologies are
needed for the fabrication and integration of functional 3D
microstructures. In this regard, additive manufacturing via two-
photon polymerization (2PP) is a promising method to achieve
such a goal due to its programmability, 3D processing
capabilities, and high spatial resolution.48,49

Due to their inherent anisotropy, fibers are potentially useful
for barcoding applications. Indeed, microfluidic schemes have
been successfully used to produce multicompartment fibers of
complex shape and composition.50 For example, microfluidic
spinning approaches provide flexibility and reproducibility in the
synthesis of uniform-sized fibers with adjustable composition, a
process inspired by the natural process of silk spinning in spiders
or silkworms.51−53 Using such a tactic, fibers with a variety of
structures can be produced, including flat fibers,54 Janus
structures,55 spiral curls,56 and bamboo-like architectures.57

To control the chemical composition and morphology of
microfibers, a microfluidic device comprising co-axial glass
capillaries has been used to synthesize coded alginate micro-
fibers.58 In addition, Hwang et al. presented amultiphase parallel
co-flow PDMS microdevice to fabricate hollow fibers with

adjustable compartments and heterogeneous payloads in a
single step.59 Using such an approach, multicompartment
microfibers allowed the synthesis of solid poly(lactic-co-glycolic
acid) fibers for cell culturing purposes. Additionally, Yu et al.
employed a multibarrel capillary microdevice with multiple
flows to fabricate hollow Janus alginate microfibers.60 That said,
although microfluidic spinning is a powerful approach for the
preparation of microfibers with complex structures, there are still
challenges associated with the high throughput fabrication of
hybrid fibers (containing structural patterns and spatiotemporal
variations in color) when cross sections fall below 10 μm.61 In
addition, although two-photon CFL allows the creation of
polymeric fibers and with sub diffraction resolution,49 the
fabrication of complex hybrid fiber structures has not yet been
demonstrated. To address these limitations, we herein combine
2PP and microfluidic laminar flow processing to fabricate
bespoke multicomponent microfibers at throughputs well in
excess of any existing method and with a superior resolution
than the existing photomask-based flow lithography methods.
The key novelty in this approach lies in the ability to rapidly
fabricate 2D microfibers in flow, significantly reducing
fabrication timescales. By scanning the excitation laser rapidly
using a mirror galvanometer, polymerization can be carried out
across co-flowing streams to generate Janus microfibers
containing user-defined encoding morphologies. Such an
encoding method can be used to prepare fibers of different
lengths and variable composition, thus allowing the introduction
of spatial patterns and unique optical signatures at the single
fiber level.

2. RESULTS AND DISCUSSION
Conventional photoinduced polymerization methods use an
ultraviolet light source (having a wavelength between 250 and
400 nm), with polymerization that occurs throughout the
entirety of the light path. Conversely, 2PP methods utilize near-
infrared excitation (between 600 and 1000 nm) to produce high-
resolution 3D structures. Here, electronic transitions occur
through the simultaneous absorption of two photons, ensuring
that radical formation and subsequent polymerization only
occur in the immediate vicinity of the focused beam waist,
resulting in a small solidified volume (between 30 and 0.4 fL)
around the focus. By controlling the location of the voxel in three
perpendicular directions (x, y, and z), a three-dimensional
structure of any shape can be created in a direct and rapid
manner. As long as the incident light intensity is controlled so
that the incident light intensity outside the focus is insufficient to
produce two-photon absorption, polymerization will be limited
to a small region in the vicinity of the optical focus. In this
respect, it is important to note that 2PP provides unique
advantages over approaches that utilize inertial flow shaping and
ultraviolet light polymerization to achieve geometric control.62

Since many pulsed lasers operate in the near infra-red region of
the electromagnetic spectrum, where most curable monomers
and polymers are transparent, and because two-photon
absorption occurs only in defined spatial regions (where the
light intensity is sufficiently high), it is possible to achieve
significantly higher light penetration depths. In this way, 2PP
will polymerize (and solidify) only a localized portion of the bulk
of the liquid resin, without affecting the surrounding region.
Figure 1a illustrates the concept underlying multi-compart-

ment/composition fiber fabrication using 2PP−CFL. Two
streams containing the pre-polymer (details provided in
Reagents) and methacryloxyethyl thiocarbamoyl rhodamine B-
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labeled pre-polymer solutions co-flow through within a Y-
shaped channel. By controlling the location of the interface (via
variations of the volumetric flow rates of the input streams) and
the laser-scan path, we are able to robustly synthesize Janus
fibers (18 μm long, 5.2 μm high, and 1.6 μm wide) containing
spatial color variations at a throughput of 2000 fibers s−1, as
shown in the fluorescence and brightfield images in Figure 1b,c.
This represents a superior fabrication rate (throughput) than
contact flow lithography63 and with a resolution more than one
order of magnitude higher. The schematic presented in Figure
1d indicates the direction of the light path (red line), the
polymerized fiber (blue line), and the flow direction (x-
direction) under normal operating conditions. Since fabrication
occurs under laminar flow conditions, the polymerized material
moves at a uniform velocity in the direction of the flow stream.
Accordingly, the laser writing path is recalculated as shown in
the left panel of Figure 1d. To simplify the writing process, the
microfluidic channel is oriented along the x axis allowing the
polymerization path to be solved by the following set of
equations
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Here, Qn+1 is the coordinate of the end point and Qn is the
starting point of design path, with vb⃗ and vf⃗ representing the
velocity vectors of the beam and flow, respectively. Pn+1
represents the end point coordinate of the beam path, and Pn
and Pn′ represent the starting point coordinates of the beam and
polymerization paths, respectively. Due to the existence of a
finite flow velocity, the original path is divided into two
directions vb⃗ and vf⃗. The free-standing fiber structure is then
obtained by scanning the photopolymerization spot, vb⃗, and the
flow motion, vf⃗, of the fluid along the length of the channel
(Figure 1d). When the laser-scan path Pn → Pn+1 is used in the
flowing medium, the polymerized fiber shifts downstream (from
the beam bath) during its construction, ending up in the “real”
geometric shape Pn′Pn+1. Figure 1e presents the recalculating
process for a two-dimensional path in the case of a pentagram
polymerized structure. By simply flowing two concurrent,
laminar streams through the microfluidic device and adopting
this polymerization process (incorporating the recalculating
method), fibers decorated with different structural patterns can
be easily and controllably synthesized (Figure 1f−i).
We applied our 2PP approach for the fabrication of various

particle shapes, which can be divided into two categories: solid
blocks and frameworks. Figure 2a−i shows the printing paths
and the corresponding fluorescence and brightfield images in the
case of rectangular (a−c), triangular (d−f), and pentagram solid
blocks (g−i, Movie S1), as well as complex pentagram (j−l,
Movie S2), rectangular cross (m−o), and triangular frameworks
(p−r). The solid and hollow framework objects were fabricated
at the rate of 150 and 950 particles s−1 respectively. The
fabricated cross structures inside the rectangular and the
triangular frameworks act to enhance the mechanical strength
of the final structures.64 3D confocal and brightfield images
(Figure S3a,b) of a pentagram framework element demonstrate
that the minimum structural element in the generated polymeric
objects is approximately 1.5 μm, which represents a one order of
magnitude improvement in resolution when compared to SFL.61

In addition, our fabrication throughput is an order of magnitude

Figure 1. Microfluidic fabrication of functional microfibers. (a)
Schematic of the fabrication process. Two types of photoresist are
introduced into the primary flow channel, with one photoresist stream
containing a fluorophore resonant with the excitation. The laser
excitation volume is moved across the interface, solidifying the resist
and producing a bespoke, three-dimensional structure. (b) Brightfield
image and (c) Fluorescence image of a fiber produced using the
described method. Recalculating process for fabricating a single fiber
(d) and pentagram frame (e) structures. (f−i) Dynamic brightfield
images illustrating the additive manufacturing process occurring under
conditional flow conditions. Scale bars are 10 μm in (b,c) and 20 μm in
(f−i).
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higher than the fabrication rate of current SFL approaches for
similar particle complexities and sizes (14 particles s−1).61 In this
regard, it should be noted that SFL approaches are limited in
throughput due to the need to stop the flow of liquid monomer
solution in the channel prior to each curing step. Indeed, when
fabricating particles with simple or complex structural patterns,
our spatial resolution is two orders of magnitude higher than
photomask flow lithography based on inertial flow engineer-
ing.65 Moreover, when compared to the throughput of current
two-dimensional, two-photon CFL (30 particles s−1),66 our
fabrication rates are at least five times higher, when synthesizing
objects of similar geometrical complexity and size.
A recent study by Yuan and co-workers reported that the

combination of a thermally drawn transparent fiber template and
masked UV-photopolymerization-enabled biaxial control of the
fabrication of microstructures with complex geometric fea-
tures.61 Although powerful, such an approach lacks flexibility
when fabricating extended and structurally complex microfibers.
Using the current method, it is possible to polymerize objects at
different points along the length of a long fiber within a fluid

volume (see Figure 3a). By tuning the volumetric flow rate and
laser beam scanning parameters (i.e., scan rate and path), fiber

dimensions can be dynamically tuned during the fabrication
process. Indeed, since the length of the resulting fiber is directly
proportional to the time that the laser probe beam spends in the
corresponding photoresist volume, the length of each segment
can be tuned by simply moving the polymerization spot across
the interface of different co-flowing solutions in the vertical
coordinate. To this end, Figure 3a presents the recalculating
path of a length-changing fluorescent functional fiber. Using
2PP−CFL, we were able to construct complex microfibers,
approximately 500 μm long and at a rate of 30 fibers s−1 (Movie
S3). In addition, fabrication of hybrid microfibers with spatial
variations in color and structural shapes (rectangles, triangles,
and pentagrams) was possible at a rate of 10 fibers s−1 (Movie
S4), thus expanding their potential as high-performance
encoding materials (Figure 3d−f). In addition, it should be
noted that the fabrication of hybrid fibers with features as small
as 1.5 μm (Figure S3c,d) represents a two order of magnitude
improvement in resolution compared to previous fiber synthesis
studies67 and the best reported in the literature to date.
The use of dyes for optical encoding is ultimately

compromised by photobleaching. This issue can be mitigated
through the introduction of structural codes (in our case,
rectangles, triangles, and pentagrams) within individual fibers.
As noted, a variety of barcoded particles or fibers incorporating
dyes have been reported, and thus, we focused our studies on the
creation of hybrid structures that carry both structural and

Figure 2. Microstructures formed using two-photon lithography flow
lithography. (a−c), (d−f), and (g−i) Printing path, fluorescence image,
and the corresponding brightfield image for rectangular, triangular, and
star-shaped solid blocks, respectively. (j−l), (m−o), and (p−r) Printing
path, fluorescence image, and corresponding brightfield image for
pentagram, rectangular, and triangular frameworks, respectively. The
dashed lines indicate the laminar flow interfaces. The scale bars are 20
μm.

Figure 3. Fabrication of multicomponent materials. (a) Description of
the recalculating path for a segmented fiber. (b) Fluorescence image of
a functional fiber. (c) Corresponding brightfield image of (b). (d)
Design path for a multistructured fiber. (e,f) Fluorescence and
brightfield images of multicomponent functional fibers fabricated
using the process shown in Figure 1. The dashed lines in (a,d) indicate
the laminar flow interfaces. All scale bars in figures are 20 μm.
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optical codes and thus mitigate potential issues related to
photobleaching.

3. CONCLUSIONS

We have demonstrated a novel method for the fabrication of
complex microstructures and fibers consisting of multiple
materials and with feature sizes as small as 1.5 μm. In contrast
to traditional lithographic techniques, templates can be
structured with biaxial control of microparticle and microfiber
geometries. To overcome potential “shape shifting” effects
caused by flow-based operation, the printing paths are
recalculated during the fabricating process. Due to the
programmability of the 2PP process, the flexibility and
throughput of the fabrication process is greatly enhanced
compared to all existing approaches. These capabilities
significantly expand the available range of accessible micro-
particles and microfibers. Indeed, and as previously noted, the
purpose of the current study has been to increase the complexity
of object geometries and significantly increase fabrication
throughput to engender the production of large numbers of
arbitrary shapes with submicron-sized feature in a continuous
manner. It is important to note that the current polymerization
process operates optimally in an X−Y laser scanning mode to
fabricate two-dimensional features at high throughput (Figure
S4). Notably, multicomponent fibers, through optical and
spatial multiplexing, exhibit significant utility in a range of
security identification and anticounterfeiting applications.68−70

A key feature of our method is the ability to fabricate hybrid
fibers that encode information via variations in shape, size, and
color. Conventional barcoding systems are prone to damage,
alteration, or falsification, which may cause a range of security
issues for the end user.71−73 Accordingly, the generation of
micron-sized barcodes made from polymers is highly desirable.
Such structures can be encoded with bespoke properties with
respect to size, shape, and color. Herein, the encoded fibers are
made from a hard and inert material via the combination of
trimethylolpropane triacrylate (TMPTA) and pentaerythritol
triacrylate (PETA) acrylate monomers. Moreover, the ability to
encode information on a micron-scale renders them attractive
for portable data file applications and real-time labeling and item
tracking. In this respect, we believe that 2PP−CFL paves the way
for a new generation of functional microscale objects that will
enable innovations across a wide variety of application fields.

4. EXPERIMENTAL SECTION
4.1. Reagents. The pre-polymer solution used in all experiments

consists of 87% (w/w) trimethylolpropane ethoxylate triacrylate (Mn =
912), 10% (w/w) PETA, and 3% (w/w) IRGACURE 369. To produce
fluorescently-labeled fibers, 0.01% of (w/w) methacryloxyethyl
thiocarbamoyl rhodamine B (Polyscience Inc., Warrington, USA)
was added to the pre-polymer solution. Addition of PETA during
synthesis is used to improve the mechanical strength of the fabricated
constructs.
4.2. Device Fabrication. The master mold for the Y-shaped

microfluidic device was fabricated, using a GT Nanoscribe 3D printer
(Nanoscribe GmbH, Eggenstein-Leopoldshafen, Germany) equipped
with a 25×, NA 0.8 plan apochromat air objective lens (Zeiss,
Oberkochen, Germany), on an ITO-coated glass substrate. The printer
is constructed around a two-photon microscope platform. A galvo-
resonant scanner controls the laser’s x−y focal point within the build
space. The cross section of the channel for direct laser writing was 500
μm× 200 μm (width× height). After printing, the mold was developed
in propylene glycol methyl ether acetate (Sigma-Aldrich, Buchs,
Switzerland) for 20 min, washed in isopropanol for 5 min, and baked in

an oven at 200 °C for 2 h. Subsequently, the mold structure was
transferred to an elastomeric substrate by pouring SYLGARD 184
polydimethylsiloxane pre-polymer (Dow Corning, Midland, USA) at a
10:1 (w/w) base to curing-agent ratio over the mold and baking at 70
°C for 2 h. Elastomeric replicas were bonded to glass coverslips (160
μm thick) after exposure to an oxygen plasma.

4.3. Device Operation. Two steams of pre-polymer (one
containing dye and one without dye) were introduced into a Y-shaped
device via two separate inlets at a flow rate of 1 μL min−1, using two
precision syringe pumps (neMESYS Syringe Pumps, CETONI GmbH,
Korbußen, Germany) (Figure S1). A 25× objective lens was used for
both printing and imaging microstructures. In all experiments, the
channel bottom is initially identified, and the excitation focus then
moved to 100 μm above this level. The galvo-resonant scanner enables
the x−y position of excitation beam focus to be controlled in a precise
and rapid manner, allowing efficient polymerization of the pre-polymer.
The laser power and scanning speed are set as 60 mW and 10 mm s−1,
respectively (Figure S2). Polymerized constructs were imaged in both
fluorescence and brightfield modes using a Nikon Ti-E microscope
(Nikon AG, Egg Switzerland) equipped with an Andor Zyla sCMOS
camera (Oxford Instruments, Oxford, UK), with ImageJ (1.47v,
National Institutes of Health, USA) being used for image processing.
3D confocal images of the produced structures were obtained using a
Nikon C2si microscope confocal microscope (Nikon AG, Egg
Switzerland) equipped with a 560 nm laser (Coherent Genesis,
Coherent Laser Systems GmbH&Co. KG, Göttingen, Germany). Two
objectives at 40× 0.75 NA and 40× 1.2 NA (Nikon AG, Egg
Switzerland) were used with a pinhole diameter of 1.05 airy disks. The z
plane was scanned with 1 μm step at the top and bottom to span the
whole microfiber height. A Rhodamine filter emission (590/50 nm,
AHF, Tübingen, Germany) was used as the fluorescence filter.
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